
SHENKAR COLLEGE OF ENGINEERING AND DESIGN – SOFTWARE ENGINEERING DPT.

Mano CPU Emulator
Generator

Software Engineering B.Sc. Final Project
Write-up

Yuval Tzur | Supervisor: Dr. Yigal Hoffner

 /2102/01/2‏

The system is a CPU emulator generator, capable of generating different CPU emulators
based on the definition of the assembly language instructions at the micro-code level and
the definition of the relevant instruction formats. The system can be used in different ways
by students who wish to understand the inner workings of a CPU and learn to program it:
both at the assembly language level – by programming the CPU in assembly language and
executing the assembled code, and the micro-code level – by defining the assembly level
instructions and their format. The generated CPU emulator allows the programmer to see
the execution of a program at the level of the assembly instructions as viewed through the
programmer interface. In addition, the emulator enables the programmer to see the
instructions being executed at the micro-code level, thereby exposing the components that
are hidden from the assembly language programmer. In addition to the above, the system
also generates the specific Assembler that translates an assembly language program, written
in the language defined by the user, to the pseudo-binary code that can then be executed by
the generated CPU emulator. The resulting system provides a powerful tool for teaching
computer science, software and electrical engineering students.

Mano CPU Emulator Generator

October 12, 2013

 3

Table of Contents
1 Introduction .. 9

1.1 Project Goal .. 9

1.2 Problem ... 9

1.3 Solution ... 9

1.4 Incentive .. 9

1.4.1 Speed and Scale ... 9

1.4.2 Data Representation ... 9

1.4.3 Physical Limitations .. 10

1.5 Description ... 10

1.6 Future Development .. 10

1.7 Audience .. 10

1.8 System Usage Stages ... 11

1.8.1 Emulator Generation .. 11

1.8.2 Program Assembling ... 11

1.8.3 Program Execution ... 11

1.9 System Users and Roles ... 11

1.9.1 User Types ... 11

1.9.2 User Roles ... 12

1.10 Terminology ... 14

1.10.1 Emulator ... 14

1.10.2 Component .. 14

1.10.3 ALU ... 14

1.10.4 Bus ... 14

1.10.5 Register ... 14

1.10.6 Flag ... 14

1.10.7 Instruction Timer .. 14

1.10.8 CPU Architecture .. 14

1.10.9 M. Morris Mano Architecture .. 14

1.10.10 CPU & Memory .. 14

1.10.11 System State .. 14

1.10.12 Assembly Instruction Set ... 15

Mano CPU Emulator Generator

October 12, 2013

 4

1.10.13 Assembly Instruction Format ... 15

1.10.14 Micro-Operation .. 15

1.10.15 Assembler.. 15

1.10.16 Instruction Set Generator (Compiler) .. 15

1.10.17 Assembly Program Editor .. 15

1.10.18 Instruction Set Template File ... 15

1.10.19 Instruction Set Template Editor .. 15

1.10.20 User Control Panel .. 15

1.10.21 Pseudo-Binary .. 15

1.10.22 Program Execution ... 15

1.10.23 Executable File ... 15

1.11 Cross-Platform Portability .. 16

2 Literature .. 17

2.1 Existing Emulators ... 17

2.1.1 Basic Computer Simulator – Laurens Rodriguez .. 17

2.1.2 Computer Simulator – Dr. Nicholas Duchon ... 17

2.2 Field-Programmable Gate Array (FPGA) ... 17

2.2.1 Cost .. 17

2.2.2 Setup .. 17

2.2.3 Availability ... 17

3 Architecture .. 18

3.1 Abstraction ... 18

3.1.1 Hardware Abstraction ... 18

3.1.2 Data Abstraction .. 18

3.2 Specifically Designed Syntax ... 18

3.3 Modularity ... 19

4 Implementation ... 20

4.1 System Structure ... 20

4.1.1 Emulator ... 20

4.1.2 Assembler.. 28

4.1.3 Parser ... 30

4.1.4 GUI ... 34

4.2 File System Structure ... 35

Mano CPU Emulator Generator

October 12, 2013

 5

4.2.1 AppData .. 35

4.2.2 Resources .. 35

4.2.3 Programs ... 35

4.2.4 Templates .. 35

4.2.5 Machines ... 35

4.3 System Design ... 36

4.3.1 DFD 0 .. 36

4.3.2 DFD 1 .. 37

4.3.3 Emulator ... 38

4.3.4 Assembler.. 47

4.3.5 Parser ... 47

4.3.6 GUI ... 47

4.4 Compilers ... 48

4.4.1 Instruction Set Compiler .. 48

4.4.2 Assembler.. 53

5 Development Environment ... 55

5.1 Programming Paradigm.. 55

5.2 Programming Language ... 55

5.2.1 Platform Portability .. 55

5.2.2 Dynamic Class Loading .. 55

5.3 System Limitations .. 55

5.3.1 Architectural Restrictions .. 55

5.3.2 User Interface .. 56

5.4 Tools .. 56

5.4.1 IDE .. 56

5.4.2 Diagrams ... 56

5.4.3 Compiler Generators ... 56

5.5 Testing ... 56

6 User Guide .. 57

6.1 Error Handling ... 57

6.1.1 Syntax Errors .. 57

6.1.2 System Crash ... 57

6.1.3 Infinite Loops ... 57

Mano CPU Emulator Generator

October 12, 2013

 6

6.1.4 Instruction Set-Assembler Mismatch .. 57

6.1.5 Missing Instruction Set .. 57

6.2 Workflow Continuity .. 57

6.3 Environment Requirements .. 58

6.4 Mano Basic Architecture .. 58

6.4.1 Architecture Components .. 58

6.4.2 Architecture Structure .. 59

6.4.3 Basic Syntax and Commands .. 60

6.5 Instruction Set Template Guide ... 62

6.5.1 Format Syntax .. 62

6.5.2 Code Syntax ... 64

6.6 User Control Panel... 69

6.6.1 Memory Panel.. 69

6.6.2 Variables Panel ... 69

6.6.3 System State Panel ... 69

6.6.4 Command Panel ... 70

6.6.5 Run Button .. 70

6.6.6 Step Button ... 70

6.6.7 uCode Checkbox ... 70

6.6.8 Reset Button .. 70

6.6.9 Exit Button ... 70

6.6.10 Load Program Button .. 70

6.6.11 Assemble Button .. 70

6.6.12 Default Template Button ... 70

6.6.13 Current Instruction Set Panel ... 70

6.6.14 New Template Button ... 70

6.6.15 Compile Button .. 70

6.6.16 Instruction Set List .. 70

6.6.17 Reload Template Button .. 71

6.7 Program Editor .. 71

6.7.1 Program Panel ... 71

6.7.2 Use Button .. 71

6.7.3 Load Button ... 71

Mano CPU Emulator Generator

October 12, 2013

 7

6.7.4 Save Button ... 72

6.7.5 Cancel Button .. 72

6.8 Instruction Set Template Editor ... 72

6.8.1 Template Name .. 72

6.8.2 Template Panel .. 72

6.8.3 Use Button .. 72

6.8.4 Load Button ... 73

6.8.5 Save Button ... 73

6.8.6 Cancel Button .. 73

6.9 Timeout Dialog .. 73

6.9.1 Stop Button ... 73

6.9.2 Cancel Button .. 73

7 Summary... 74

7.1 Main Focal Points .. 74

7.1.1 CPU Architecture and Functionality .. 74

7.1.2 Software-Hardware Modeling .. 74

7.1.3 Scalability .. 74

7.2 Conclusions .. 74

7.2.1 Good Planning is Key for Success .. 74

7.2.2 Good Tools can Make the Difference .. 74

7.3 Future Work ... 75

7.3.1 Multithreaded Implementation .. 75

7.3.2 Editable Architecture .. 75

7.3.3 Move to the Cloud .. 75

7.3.4 Instruction Set Generation Tool .. 75

8 References .. 76

8.1 Research .. 76

8.2 Technical References ... 76

9 Appendix A .. 77

9.1 Template for the Basic Mano Instruction Set .. 77

10 Appendix B .. 80

10.1 Useful Links .. 80

10.1.1 Java CUP .. 80

Mano CPU Emulator Generator

October 12, 2013

 8

10.1.2 IntelliJ IDEA .. 80

10.1.3 Visio .. 80

10.1.4 Sublime Text .. 80

10.1.5 WinMerge ... 80

Table of Figures
Figure ‎1-1: The different types of users and the parts of the system that they use 12

Figure ‎1-2: System work sequence .. 13

Figure ‎1-3: The different types of users and the processes which they can control 13

Figure ‎4-1: DFD 0 .. 36

Figure ‎4-2: DFD 1 .. 37

Figure ‎4-3: Emulator package ... 38

Figure ‎4-4: Global package ... 39

Figure ‎4-5: Components package .. 43

Figure ‎4-6: Assembler package ... 47

Figure ‎4-7: Parser package ... 47

Figure ‎4-8: GUI package ... 47

Figure ‎6-1: The M. Morris Mano CPU architecture .. 59

Figure ‎6-2: User control panel .. 69

Figure ‎6-3: Program editor ... 71

Figure ‎6-4: Instruction set template editor ... 72

Figure ‎6-5: Timeout dialog alert .. 73

Mano CPU Emulator Generator

October 12, 2013

 9

1 Introduction

1.1 Project Goal
The project's goal is to provide a tool for software and electrical engineering students. The

system will allow students to learn and understand the inner workings of a simple CPU and

the assembly language it implements:

 Novice students can use the tool to learn the assembly language while observing the

changes in memory and main registers.

 Intermediate students can use the tool to learn the micro-code and binary

representations used by the CPU that implement the assembly commands.

 Advanced students will have the ability to add, remove and rearrange micro-

operations to add new assembly commands or edit/remove existing ones, as well as

redefining the instruction format that may be necessary to accommodate the

changes.

1.2 Problem
While currently there are tools that students can use to learn the assembly and micro-code

of a CPU, none of them offers an editable instruction set. All the lectures and home

assignments which require changes to the instruction set are done on paper, and every

change to the instruction set can only be checked manually following each and every micro-

operation, noting all the changes it generated in the CPU.

1.3 Solution
In order to facilitate both teaching and learning the effects a change of the instruction set

will have on the CPU, users can generate a customized instruction set.

1.4 Incentive
An obvious assumption would be that learning about the functionality of a CPU using a real,

functioning, CPU will have better results, but such an assumption is wrong for several

reasons:

1.4.1 Speed and Scale

Hardware components are designed for speed, and to achieve that, they are designed as

small possible. The high speed performance would prevent real time observation, as the

slowest general purpose CPU performs at a rate of 100k operations each second. A modern

CPU's inner circuits cannot be seen with an optical microscope.

1.4.2 Data Representation

Hardware processors do not represent the data as simple 'ones and zeroes' as shown on

abstract models. The real representation of the data is defined as different ranges of voltage

that vary from one processor to the other. Furthermore, the same values can be

represented using different voltage ranges within the same chip. To be used for observation

purposes, the values need to be measured and translated into a readable state.

Mano CPU Emulator Generator

October 12, 2013

 10

1.4.3 Physical Limitations

As opposed to software, hardware has a physical dimension. The CPU's functionality is

defined by physical circuits. Changing a processor's functionality is very hard, and cannot be

done as simply as changing the functionality of a software program.

1.5 Description
The system is a software based generator that is capable of generating CPU emulators,

based on the definition of the assembly instructions provided by the user. The resulting CPU

emulators provide the functionality of a basic central processing unit of a digital computer.

The use of the system can be viewed from different points of view according to the expertise

of the user:

 Initially, a specifically generated CPU emulator provides a working platform for basic

programming, using a low-level program language (Assembly language). After

writing a program, the student can use the system to run it and watch for the

program's result.

 After a student has reached a higher level as a programmer, she can use the same

platform in order to learn how a CPU operates when following the instructions of

the program. To do so, the system can run on a step-by-step mode, executing one

assembly command at a time, allowing the student to observe the changes made to

the data and other values by the command. A more advanced mode can show not

only each assembly command, but also the flow of data between the different CPU

components while evaluating the outcome of that command.

 Finally, an advanced student can delete, edit or create assembly instructions by

defining the data flow steps that take place within the CPU whenever a command is

processed. After redefining the commands, a new assembly language is created,

consisting of the new set of instructions the student defined. The new language can

now be used to create new programs with the customized commands.

1.6 Future Development
The emulator, as currently implemented, allows for the instruction set to be edited, but it is

still limited by its basic architecture. While not supported yet, the emulator was designed in

a way that allows the ability to configure the architecture to be added in the future. A closer

resemblance to real hardware can also be accomplished by allowing some of the

functionality to run in parallel, like real electrical circuits do.

In addition, the GUI is not final. While allowing the user to use most of the system, some

features were not implemented (I/O devices, for example). A web-based GUI would allow

the users to use the emulator without downloading it, removing the need for a Java SDK

installation and improving platform portability.

1.7 Audience
The system is designed for academic purposes, to ease the learning process of the CPU's

behavior. The system can be used by the professor while lecturing or while grading home

assignments, or by the students when practicing the course material.

Mano CPU Emulator Generator

October 12, 2013

 11

1.8 System Usage Stages
The system has three usage stages that allow the user to generate, and then use, a CPU

emulator (Figure ‎1-1, Figure ‎1-2).

1.8.1 Emulator Generation

This is the first stage. In this stage, the instruction set is defined by creating an instruction

set template file that defines the instruction format and the assembly micro-code. The

template is used to generate a new emulator and assembler.

1.8.2 Program Assembling

The second stage uses the previously generated assembler to convert programs written by

the user, using the newly defined assembly language, into pseudo-binary code that can be

executed by the emulator.

1.8.3 Program Execution

In the last stage, a pseudo-binary code can be loaded into the emulator's memory. The code

will be executed by the emulator. Using the emulator's various interfaces, the user can

follow the program's execution.

1.9 System Users and Roles
The system has four different types of users and two different roles. There is not any formal

limitation on what type of user can perform each of the roles, but the skill level of the user

might prevent them from assuming the advanced role of instruction set editor.

1.9.1 User Types

The user types differ mostly by their knowledge and experience levels. As a user's skill level

increases he will be able to use the more advanced capabilities of the system (Figure ‎1-1).

1.9.1.1 Novice

A novice student is a student not familiar with assembly programming. This type of student

is expected to write simple programs and execute them. To better understand the assembly

language, this type of student can use the step-by-step command execution, allowing them

to understand the effect each command has on the system.

1.9.1.2 Intermediate

An intermediate student has a higher skill level and should be comfortable writing complex

programs. To further understand the effect each assembly command has on the CPU, this

type of student can use the step-by-step micro-operation execution, which splits each

assembly command to its micro-operations and performs them separately.

1.9.1.3 Advanced

The advanced student's skill level goes beyond the programming skills. This type of student

understands the processor's micro-operations and the way they affect each component, and

the system as a whole at the same time. An advanced student has the amount of skill and

knowledge to assume the role of instruction set editor.

Mano CPU Emulator Generator

October 12, 2013

 12

1.9.2 User Roles

The user roles are defined by the usage of different parts in the system and the way they are

being used. A user may change roles while using the system (Figure ‎1-3).

1.9.2.1 Professor

The professor can use the system when teaching by using it in front of the class to showcase

an example or while assessing or grading a student's performance by reloading a program or

an instruction set template made by the student.

1.9.2.2 Programmer

A programmer is a user that uses the system to write assembly programs and executes

them. A programmer's skill level can vary, but even expert programmers are bound by the

limit of the assembly language.

1.9.2.3 Instruction Set Editor

An instruction set editor is an expert programmer that reached a skill level high enough to

fully understand the assembly language and the micro-operations implementing it. Using

their expertise, instruction set editors can expand or change the boundaries of the assembly

language by redefining it.

I

II

III

Template

Command Format
+

Command
Micro-Code

Emulator and Assembler
Generator

Assembly
Program

Assembler

Machine
Code

Emulator

Input

Generate

GenerateInput

Assemble

Load

Novice

Intermidiate

Advanced

Figure ‎1-1: The different types of users and the parts of the system that they use

Mano CPU Emulator Generator

October 12, 2013

 13

Instruction
Set Edit

Instruction
Set Compile

Program
Edit

Program
Assemble

Generate Assembler

Execute
Program

Load
Program

Generate Micro-Code

Figure ‎1-2: System work sequence

Instruction Set Editor

Write Instruction Set Template

Compile Instruction Set

Write Program

Execute ProgramProgrammer

Professor

 Figure ‎1-3: The different types of users and the processes which they can control

Mano CPU Emulator Generator

October 12, 2013

 14

1.10 Terminology

1.10.1 Emulator

The emulator is the system as a whole. The emulator contains an emulated CPU and

memory, an assembler, an instruction set generator (Compiler), a program editor, an

instruction set template editor and a user control panel.

1.10.2 Component

In the scope of this project, a component is a software class that emulates the structure and

behavior of a hardware component. The components emulated are: ALU, Bus, Register, Flag,

Instruction Timer and Memory.

1.10.3 ALU

An ALU is an arithmetic and logic unit. The ALU is the main component in the CPU, whose

function is to perform arithmetical or logical operations on a given input.

1.10.4 Bus

A bus emulates a data channel, used to transfer data from one component to another.

1.10.5 Register

A register is a collection of bits that store data.

1.10.6 Flag

A flag is a 1-bit component, usually used to note the occurrence of an event or a state of the

system.

1.10.7 Instruction Timer

The instruction timer's function is to count the cycles of an assembly instruction, performing

the relevant micro-operations in each cycle.

1.10.8 CPU Architecture

CPU architecture is a set of components and the relation between those components that

defines the structure of the CPU.

1.10.9 M. Morris Mano Architecture

The M. Morris Mano architecture (Figure ‎6-1) is a basic CPU architecture designed by Mano

in his book 'Computer System Architecture'. This architecture is very basic and was designed

for pedagogical purposes.

1.10.10 CPU & Memory

Both the CPU and the memory are software models of the respective hardware. In the scope

of this project, the memory is treated as if it was a component within the CPU. The memory

stores all the instructions and commands as pseudo-binary code. The CPU emulates the

execution of the program on the M. Morris Mano architecture.

1.10.11 System State

The system state is the overall value of each component at a given time during program

execution.

Mano CPU Emulator Generator

October 12, 2013

 15

1.10.12 Assembly Instruction Set

An instruction set is a set of assembly instructions that are known to the CPU. The

instruction set defines any assembly instruction as a group of micro-operations that

implement the given instruction.

1.10.13 Assembly Instruction Format

The instruction format is the description of what the bits represent and how they are

arranged within a command.

1.10.14 Micro-Operation

A micro operation is the basic operation performed by the CPU, usually consisting of one

operation performed on a component, or transferring data between components.

1.10.15 Assembler

The assembler is a basic compiler that translates assembly code into a pseudo-binary

executable file. The assembly code is provided to the emulator using the program editor.

1.10.16 Instruction Set Generator (Compiler)

The instruction set generator is a compiler that translates a specially designed template file

into a working instruction set. A new assembler, updated according to added or removed

instructions, is generated as well.

1.10.17 Assembly Program Editor

The program editor is used by the user to write or edit assembly programs to be executed.

1.10.18 Instruction Set Template File

An instruction set template file is a text file that defines assembly instructions and the way

they translate into micro-operations, as well the way they should be translated by the

assembler. A template file should follow a specifically designed syntax.

1.10.19 Instruction Set Template Editor

The instruction set template editor is used by the user to write or edit template files.

1.10.20 User Control Panel

The user control panel allows the user to monitor the system state during program

execution and load new programs or template files.

1.10.21 Pseudo-Binary

A Pseudo-binary representation is a representation of content in a binary form, using a

predetermined format instead of real bits. The representation of bits is done using 'true' and

'false' values in software, or the '1' and '0' characters in text.

1.10.22 Program Execution

The program execution is the process of moving from one system state to another according

to the program given, in order to reach the program's result.

1.10.23 Executable File

An executable file works like a real executable, using pseudo-binary content. The CPU uses

this file the same way a real CPU uses a binary executable.

Mano CPU Emulator Generator

October 12, 2013

 16

1.11 Cross-Platform Portability
Designed for the use of students, the system cannot be bound to a specific platform. To

improve portability, the system was designed and implemented using the Java programming

language, which is known for its cross-platform capabilities. Although Java was used, some

features use functionality given by the OS when high level functionality, such as code

compiling, is needed. The use of these system calls was reduced to a minimum and the calls

themselves were made as general as possible, but the system's performance in non-

Microsoft Windows environments has yet to be proven.

Another possible solution for this problem would be to use cloud computing, running the

system on a supporting server and providing a web-based user interface for the users.

Mano CPU Emulator Generator

October 12, 2013

 17

2 Literature
There are several existing tools that can be used to teach the mechanics of a CPU, but none

of them have the full usability of the emulator created in this project.

2.1 Existing Emulators
These are two examples of existing emulators. Both examples, as well as other emulators

that were tested, have no capability to customize the instruction set. Most simulators and

emulators contain a bug inherited from the book's implementation of the SPA command. By

checking the MSb (sign bit) only, the command treats zero as a positive number.

2.1.1 Basic Computer Simulator – Laurens Rodriguez

The Basic Computer Simulator is a basic, web-based, implementation of the Mano CPU

architecture. It provides a graphic user interface for the system state, a small editor and

basic specifications for the registers and assembly language. The GUI shows only 16 memory

slots at any given time, requiring the user to move the memory table's starting point several

times when executing a program with more than 16 lines of code. The Basic Computer

Simulator's step-by-step option works on micro-operations and does not have the ability to

execute a full assembly command on each step.

2.1.2 Computer Simulator – Dr. Nicholas Duchon

This simulator provides a platform that allows execution of assembly programs according to

Mano's assembly instruction set. The GUI is somewhat uncomfortable and not intuitive.

When given a label to an address, the program editor will translate it to an hexadecimal

value if possible, which is not compatible with the assembly language described in the book,

and is not mentioned in the tool's documentation. The simulator does not ignore

whitespaces (not mentioned in the documentation either) and the workflow is very slow.

2.2 Field-Programmable Gate Array (FPGA)
An FPGA is a programmable hardware component that can be used to emulate integrated

circuits. The use of FPGAs has several disadvantages:

2.2.1 Cost

While software can be distributed with no additional costs, FPGAs are physical hardware

components that need to be purchased.

2.2.2 Setup

The use of an FPGA requires the full circuit implementation of all the components on each

FPGA. To monitor the system's state, each FPGA needs a connection to a computer or any

other external output device. All values in the FPGA are represented by voltage differences

and need to be translated to a bitwise representation.

2.2.3 Availability

Because of the cost and the setup requirements, making the FPGAs available for students

outside of a dedicated lab is impractical.

https://code.google.com/p/basic-computer-simulator/
http://sandsduchon.org/duchon/cs311/CompSim/

Mano CPU Emulator Generator

October 12, 2013

 18

3 Architecture

3.1 Abstraction
The purpose of the system is to facilitate teaching and learning of the functionality of the

CPU. To do so, the system uses several layers of abstraction:

3.1.1 Hardware Abstraction

As the system revolves around imitating a CPU's functionality, it should contain the various

parts that a CPU is composed of, as well as the way they are connected to one another. To

create all those components and their interactions, a software model of each component

was created. Any one of those models is defined by its purpose and behavior, and imitates,

as closely as possible, the real hardware counterpart. The interaction between components

is performed by following logical rules that are based on real electrical functionality (for

example, master-slave flip-flop functionality is simulated by writing all data to temporal

buffers until all data read operations are fulfilled).

3.1.2 Data Abstraction

In real hardware systems, data is defined by electrical or magnetic bits. Those bits use

voltage or magnetic field differences to denote the bit's value. To make the data accessible

to the system users, the data is represented using various representations:

 Within the system, bit values are represented using Boolean values. In addition to

the trivial transformation from physical to logical values, using Boolean variables

allow the system to easily perform checks on the data by using basic conditional

statements available in any programming language.

 When interacting with the user, the data is represented textually. The textual

representation can use the binary notation, using the '0' and '1' characters to denote

the value per bit, or the hexadecimal notation that allows for better readability

when handling large amounts of data.

The system offers a built in mechanism that performs conversions from any of those

representations to any other.

3.2 Specifically Designed Syntax
Generating a new customized emulator affects both the assembly commands and the way

those commands are processed by the CPU. For the new assembly language to take effect,

changes are required in the code implementing the assembler and the CPU. The changes are

not always intuitive and may require various modifications in different locations throughout

the code, making manual configuration impractical.

To overcome this, a high level syntax was developed. The syntax uses a set of symbols to

represent the different actions the CPU can perform, allowing the user to write relatively

simple expressions without ever needing to understand the actual implementation of the

system. The translation from the user-friendly syntax into code implementing both the new

assembly language and its assembler is done using a subsystem developed specifically for

that purpose.

Mano CPU Emulator Generator

October 12, 2013

 19

3.3 Modularity
By implementing each component separately and connecting them to create the system as a

whole, a high level of modularity was attained. Adding and removing components, as well as

changing the connectivity of the different components, can be done easily, allowing the

system to emulate different CPU architectures simply by replacing one set of components by

another. One of the future objectives is to allow this kind of changes to be done

automatically, using methods similar to those used currently for new assembly language

generation.

Mano CPU Emulator Generator

October 12, 2013

 20

4 Implementation

4.1 System Structure
This is a high level overview of the system. A more detailed view can be found in the system

design section.

The system is composed of four main packages:

4.1.1 Emulator

The Emulator package is the core of the system, providing most of the functionality. The

package contains all the components and defines the architecture of the emulated CPU. The

Emulator package is composed of three smaller packages (Figure ‎4-3):

4.1.1.1 Global

The Global package implements classes that generate functionality relevant to the system as

a whole, and are not related to a specific component (Figure ‎4-4).

4.1.1.1.1 Input Files

The CPU emulator uses two input files, both of them used by classes within the global

package.

4.1.1.1.1.1 DataTransferMap.csv

The DataTransferMap.csv file serves as a configuration file to define connectivity between all

the different components that can hold data. The transfer map is based on the same

principles as a routing table. Each line consists of three fields:

 Current component: Indicates the current component holding the data that needs to

be transferred.

 Target component: Indicates the component that the data should be transferred to.

 Next component: Indicates the next component in the data route that leads to the

target component. In addition to component names, this field can also contain

status values such as TARGET_REACHED or UNREACHABLE.

4.1.1.1.1.2 Program.csv

The Program.csv file represents a pseudo-binary executable file. Each line in this file defines

one line of the program, as stored in the memory. Each line contains three fields:

 Memory address (Hexadecimal representation): Defines the memory address in

which the content is held. This allows for memory gaps without saving all the empty

memory slots between program blocks.

 Memory content (Hexadecimal representation): Defines the contents of the given

memory address.

 Assembly command (Text): This field is not used by the emulator directly. The

purpose of this field is to provide the assembly command that generated the line, so

it can be shown by the UI.

Mano CPU Emulator Generator

October 12, 2013

 21

4.1.1.1.2 Classes

4.1.1.1.2.1 Loader

Extends the ClassLoader class. The Loader class was implemented to allow loading classes

using a custom path instead of the default path defined by the package hierarchical system.

This allows for all the classes of a specific instruction set to be placed in the same directory.

4.1.1.1.2.2 Constants (Interface)

The Constants interface defines a set of constant values used throughout the system.

Type Name Value Comments

Boolean _0 false Custom notation

Boolean _1 true Custom notation

Integer TIMEOUT 10,000 Commands before timeout

Integer DATA_REGISTER_SIZE 16 16-bit data

Integer ADDR_REGISTER_SIZE 12 12-bit address

Integer IO_REGISTER_SIZE 8 8-bit ASCII encoding

Integer MEMORY_SIZE 2ADDR_REGISTER_SIZE Maximal address value

Integer BUS_SIZE DATA_REGISTER_SIZE Same as biggest storing unit

Integer DATA_COMPONENTS 22 Total number of components

Integer DATA_TABLE_SIZE 15 Number of data components

Integer TIMER_LIMIT 16 Max cycles per command

Integer ALU 0 Component ID

Integer ALU_IN0 1 Component ID

Integer ALU_IN1 2 Component ID

Integer ALU_OUT 3 Component ID

Integer M 4 Component ID

Integer BUS 5 Component ID

Integer AR 6 Component ID

Integer PC 7 Component ID

Integer DR 8 Component ID

Integer AC 9 Component ID

Integer IR 10 Component ID

Integer TR 11 Component ID

Integer TR0 TR Backwards compatibility

Integer TR1 12 Component ID

Integer INPR 13 Component ID

Integer OUTR 14 Component ID

Integer E 15 Component ID

Integer R 16 Component ID

Integer S 17 Component ID

Integer I 18 Component ID

Integer IEN 19 Component ID

Integer FGI 20 Component ID

Integer FGO 21 Component ID

Integer TIMER 22 Component ID

Integer UNREACHABLE -99 Impossible data transfer

Integer TARGET_REACHED -1 Data transfer complete
Table ‎4-1: System constants and values

Mano CPU Emulator Generator

October 12, 2013

 22

4.1.1.1.2.3 Value

Implements the Constants interface. An object of the Value class represents a numerical

value. The numerical value is stored in a binary representation, implemented as an array of

Boolean variables. The binary value has a configurable number of bits. Smaller numbers do

not reduce the number of bits. They instead fill the free bits with leading zeroes. A value can

be set or accessed using decimal (integer) or hexadecimal (string) representations. In its

binary representation, parts of the value can be accessed by providing a specific bit or a

range of bits. Parts of the value can be set or accessed in decimal or hexadecimal

representations. The Value class can be used as a representation converter, and it supports

negative values. In its binary representation, a negative value is defined using 2's

complement, calculated using the specified amount of bits.

4.1.1.1.2.4 DataTransferMap

Implements the Constants interface. The data transfer map is a 2-dimensional array that

defines the route used when transferring data from one component to another. The rows

and columns represent the components, where any component is represented by the index

matching its ID. The rows represent the components currently holding the data, the columns

represent the components the data is transferred to and the intersections represent the

next component in the data route. In addition, any intersection can hold the status values of

TARGET_REACHED, if the current component is the same as the target component, or

UNREACHABLE if no route exist to transfer the data from the current component to the

target. Some components cannot hold data and therefore cannot be used as targets. The

transfer map is filled using a two-step algorithm. At first, all intersections of a row and

column with the same index are marked as TARGET_REACHED and the rest are marked as

UNREACHABLE. In the second step, the DataTransferMap.csv file is loaded and used to

update the map. Only intersections different from the default are required to be written in

the DataTransferMap.csv file, but no error occurs if a line in the file is the same as an

existing intersection value.

To facilitate use, the ALU is defined as a single component in addition to the definition of

each of his inputs and outputs. Whenever the ALU is set as the target, the transfer map will

automatically route towards the correct input of the ALU. If the ALU is set as the current

component, the transfer map will refer to it as if it was the ALU output.

For backwards compatibility, TR and TR0 share the same ID, and are represented by the

same entrance in the transfer map.

The default transfer map, supporting the M. Morris Mano architecture, appears in the next

page (Table ‎4-2).

Table ‎4-2: Data transfer map

 Green – Target reached

 Red – Unreachable

Target

Current

A
LU

A
LU

_IN
0

A
LU

_IN
1

A
LU

_O
U

T

M

B
U

S

A
R

P
C

D
R

A
C

IR

TR
0

TR
1

IN
P

R

O
U

TR

ALU AC

ALU_IN0 ALU_OUT ALU_OUT

ALU_IN1 ALU_OUT ALU_OUT

ALU_OUT AC

M BUS BUS BUS BUS BUS BUS BUS

BUS M AR PC DR IR TR0 TR1 OUTR

AR BUS BUS BUS BUS BUS BUS BUS

PC BUS BUS BUS BUS BUS BUS BUS

DR ALU_IN0 ALU_IN0 ALU_IN0 BUS BUS BUS ALU_IN0 BUS BUS BUS BUS

AC ALU_IN1 ALU_IN1 ALU_IN1 BUS BUS BUS BUS BUS BUS BUS BUS

IR BUS BUS BUS BUS BUS BUS BUS

TR0 BUS BUS BUS BUS BUS BUS BUS

TR1 BUS BUS BUS BUS BUS BUS BUS

INPR ALU_IN1 ALU_IN1 ALU_IN1 ALU_IN1

OUTR

Mano CPU Emulator Generator

October 12, 2013

 24

4.1.1.1.2.5 ProgramLine

Implements the Constants interface. A program line object stores one assembly command.

The command is represented by the binary representation of the command, the binary

representation of the command's memory address and a string containing the assembly

command as it appeared in the Program.csv file.

4.1.1.1.2.6 Program

A program object stores a complete program as a list of program lines. The objective of this

class is to serve as a list with no set size. Once all the program lines were loaded, the

Program can convert the list into a workable array with a well defined length and indices.

4.1.1.1.2.7 Processor

Implements the Constants interface. The Processor class implements the actual CPU

architecture. It contains all the necessary components and the data transfer map. The

processor defines the type, name and ID for each component used by the CPU. During

program execution, the processor holds the system state at all times. Every micro-operation

execution will affect the values of the processor's components, moving it to the next system

state.

In order to obtain an easy access to all the different components, an array was added to the

processor. Each array element points to a component. The component's ID defines the index

of the element in the array pointing to it.

4.1.1.1.2.8 iInstructionsUCode (Interface)

The iInstructionsUCode interface defines the methods any InstructionsUCode class needs to

implement. All the instruction sets, including the default one and the auto-generated ones,

will implement this interface.

4.1.1.1.2.9 InstructionsUCode

Implements the iInstructionsUCode and Constants interfaces. This is the default system's

instruction set. Its purpose is to perform micro-operations on the processor, according to

the currently executed assembly command. The InstructionsUCode class implements a

method for each timer cycle. When executing a micro-operation, the method corresponding

to the current cycle is invoked. The method will go through all possible actions for that cycle,

looking for an applicable action. If the system's state allows for an action to occur, that

action is executed on the CPU.

Whenever a new instruction set is generated, a copy of this class is generated as well,

adapted to the newly defined instruction set. The new copy's name includes the new

instruction set's name as a prefix.

4.1.1.1.2.10 Emulator

Implements the Constants interface. The Emulator class combines the processor, instruction

set and assembler into a working emulated computer. The emulator can load a program,

assemble it, load the resulting pseudo-binary into the system's memory and use the

instruction set to execute it on the processor. The emulator can also provide component

values to be used by other parts of the system.

Mano CPU Emulator Generator

October 12, 2013

 25

4.1.1.2 Components
The Component package implements the classes used as the system's components. Each class emulates the

class emulates the functionality of a specific hardware component (

<<Abstract>>

Component

<<Interface>>

DataComponent

Memory

DataRegister

ALU

AddressRegister

Bus

InstructionTimer

Flag

IORegister

<<Abstract>>

Register

OutputInput

Figure ‎4-5).

4.1.1.2.1 Classes

4.1.1.2.1.1 Component (Abstract)

The Component class defines the basic information any component should have. The basic

information includes a component ID and a component name. The ID is the same as

described in the constants table and the name is a more descriptive string. A component ID

must be a positive integer, as those IDs are later used as indices for arrays.

4.1.1.2.1.2 InstructionTimer

Extends the Component class. The instruction timer's function is to count the cycles within

each assembly command. The maximum number of cycles allowed for each command is

defined by the TIMER_LIMIT constant. After reaching the limit, the timer resets to zero. An

assembly command can be implemented using less than the maximum number of cycles. If

that is the case, the instruction timer will do nothing on the remaining cycles unless given

the reset command. The reset command sets the counter to zero without reaching the

maximum boundary. A micro-operation is performed in one instruction cycle, but more than

Mano CPU Emulator Generator

October 12, 2013

 26

one micro-operation can be performed in the same cycle. Performing more than one micro-

operation in the same cycle should be done carefully, as the system's state is updated only

at the end of each cycle. The result of changing the value in a given component more than

once before the state was updated is not defined, and may result in data loss or corruption.

4.1.1.2.1.3 DataComponent (Interface)

The DataComponent interface defines all the methods used by the components that can

store data. Each data-storing component implements the relevant methods, and returns a

default value while doing nothing for irrelevant methods. While most components use a

small subset of the DataComponent interface, the interface was needed to allow for a

polymorphic behavior when handling data.

4.1.1.2.1.4 Bus

Extends the Component class and implements the DataComponent interface. The Bus class

emulates the functionality of a data bus, connecting components to one another, allowing

data flow between them. The bus is used to move data, but is not considered a data-storing

component. The value on the bus is the last value moved through it and it has no meaning

by itself. The bus will accept new data without the need for the processor to enable it for

writing. Data written to the bus overrides the previous data immediately. Moving more than

one value through the bus in the scope of a single cycle may result in data loss or corruption.

4.1.1.2.1.5 Flag

Extends the Component class and implements the DataComponent interface. This class

emulates the functionality of a 1-bit flag. The flag simulates the master-slave functionality of

a real hardware flag, allowing its old value to be read while updating its value in the same

cycle. A flag object can only hold a true or false value, not a numerical value. In addition, the

flag notes if its value was set to true since the last time its value was read.

4.1.1.2.1.6 Register (Abstract)

Extends the Component class and implements the DataComponent interface. The Register

class emulates the functionality of a hardware register. The register stores a numeric value

in its binary representation as a series of bits. A register simulates the master-slave

functionality of a real hardware register, allowing its old value to be read while updating its

value in the same cycle. For the value of a register to be changed, the system must enable it

for writing. A register has two special operations, clear and increment, that set the value to

zero or increase the value by one, respectively. The system uses three different kinds of

registers:

 Data registers: Used to store data or commands.

 Address registers: Used to store memory addresses.

 I/O registers: Used to store data used by input and output devices.

The register types differ only by the number of bits used to store their value.

4.1.1.2.1.7 DataRegister

Extends the Register class. Data registers are used to store data or commands. Their length

is defined by the DATA_REGISTER_SIZE constant.

Mano CPU Emulator Generator

October 12, 2013

 27

4.1.1.2.1.8 AddressRegister

Extends the Register class. Address registers are used to store memory addresses. Their

length is defined by the ADDR_REGISTER_SIZE constant.

4.1.1.2.1.9 IORegister

Extends the Register class. I/O registers are used to store data used by input and output

devices. Their length is defined by the IO_REGISTER_SIZE constant.

4.1.1.2.1.10 Memory

Extends the Component class and implements the DataComponent interface. The Memory

class emulates the system's memory as an array of values. The memory points to an address

register whose value represents the memory address to be written or read. Whenever a

memory slot is accessed, the value of the address register is used as the array's index. The

memory simulates the master-slave functionality of real hardware, allowing an old value to

be read while updating the value in the same memory slot within the same cycle. Accessing

different slots at the same time is not possible, as all slots share the same address register,

which can hold only one value at any given time. Each slot can contain one command or one

data value represented as a numerical value in a binary representation. The number of bits

used to represent each value is defined by the DATA_REGISTER_SIZE constant. The total

memory size is defined by the MEMORY_SIZE constant, which equals to 2ADDR_REGISTER_SIZE. This

allows for one memory slot for each possible value of the address register.

An additional array of strings, the same size as the memory, was added to the memory. Each

element in the string array holds the assembly command corresponding to the memory slot

in the respective index. While this extra data is not required for the emulator's functionality,

it allows the commands to be mapped to their assembly origins without decompiling the

pseudo-binary code.

4.1.1.2.1.11 ALU

Extends the Component class and implements the DataComponent interface. The ALU class

emulates the functionality of an arithmetic and logic unit. The ALU is composed of two inner

classes. An ALU has two input and one output objects. Binary operations use both inputs as

the two operands and the output to store the result. Unary operations require the input

used to be stated explicitly. Logical operations will set the output value to 1 if the result is

'true' or 0 if the result is 'false'. Arithmetical operations will set the output to the resulting

numerical value. The ALU points to an end carry flag, which it sets to true if the arithmetical

calculation generates an end carry. Data can be lost if the result exceeds the number of bits

used to represent the output's value. Both inputs and the output have their number of bits

defined by the DATA_REGISTER_SIZE constant. The ALU, both inputs and the output have an

ID each.

4.1.1.2.1.11.1 Inner Classes

4.1.1.2.1.11.1.1 Input

Extends the Component class and implements the DataComponent interface. The input's

number of bits is defined by the DATA_REGISTER_SIZE constant and it requires the system to

enable it for writing.

Mano CPU Emulator Generator

October 12, 2013

 28

4.1.1.2.1.11.1.2 Output

Extends the Component class and implements the DataComponent interface. The output's

number of bits is defined by the DATA_REGISTER_SIZE constant and it does not require the

system to enable it for writing. The output's value should not be set in any way other than

by the ALU's functionality.

4.1.1.2.1.11.2 Operations

The ALU supports a variety of operations. Operations using both inputs as operands are

binary operations, and operations using only one of the inputs are called unary operations.

4.1.1.2.1.11.2.1 Binary Operations

The binary operations can be divided into two categories:

4.1.1.2.1.11.2.1.1 Arithmetical Operations

These operations perform some kind of mathematical or a bitwise calculation and store the

result in the ALU's output. The arithmetical operations are:

 Sum: Sums the values of both inputs.

 Subtract: Subtracts the value of 'Input 1' from 'Input 0'.

 Multiply: Multiplies the values of both inputs.

 Divide: Divides 'Input 0' by 'Input 1'.

 Modulo: Calculates the reminder of the division of 'Input 0' by 'Input 1'

 AND: Performs a bitwise AND operation on both inputs.

 OR: Performs a bitwise OR operation on both inputs.

 XOR: Performs a bitwise XOR operation on both inputs.

4.1.1.2.1.11.2.1.2 Logical Operations

These operations perform a logical evaluation on the inputs and set the output value to 1 if

the evaluation returned a 'true' result or to 0 if the evaluation returned a 'false' result. The

logical operations are:

 Equal: Checks if 'Input 0' is equal to 'Input 1'.

 Not equal: Checks if 'Input 0' is not equal to 'Input 1'.

 Greater than: Checks if 'Input 0' is greater than 'Input 1'.

 Less than: Checks if 'Input 0' is less than 'Input 1'.

 Greater or equal: Checks if 'Input 0' is greater than, or equal to, 'Input 1'.

 Less than or equal: Checks if 'Input 0' is less than, or equal to, 'Input 1'.

4.1.1.2.1.11.2.2 Unary Operations

The unary operations operate on a single input, thus requiring the input used to be

announced explicitly. The result of the operation is stored in the ALU's output. Each of the

unary operations exists for both the inputs. The unary operations are:

 Pass through: Moves the value of the specified input to the output, without

changing it.

 Complement: Performs a bitwise NOT operation on the specified input.

Mano CPU Emulator Generator

October 12, 2013

 29

 Shift left: Moves the bits of the specified input to the left. The offset and the value

used to fill the missing bits are given as parameters.

 Shift right: Moves the bits of the specified input to the right. The offset and the

value used to fill the missing bits are given as parameters.

4.1.1.3 Exceptions

The Exceptions package defines custom exceptions used by the system.

4.1.1.3.1 NegativeIdException

This exception is thrown whenever a component is given a negative ID number.

4.1.2 Assembler

The Assembler package functions as the system's assembler, whose function is to compile

assembly programs into a pseudo-binary file (Figure ‎4-6).

4.1.2.1 Input / Output

The assembler uses one input file and generates two output files.

4.1.2.1.1 Program.dat

Program.dat is the input file for the assembler. It contains the program exactly as it was

written by the programmer. The content of this file is loaded into the assembler, and is then

compiled into the Program.csv and VarTable.csv files.

4.1.2.1.2 Program.csv

The Program.csv file is one of the outputs of the assembler.

4.1.2.1.3 VarTable.csv

The VarTable.csv file is also created by assembler. This file maps the labels used in the

program and the address in memory each occupy. It is used by the UI. The two fields in every

line are:

 Label name (Text): This is the name of the label. A label can be used to identify a

variable, a subroutine or any part of the code that the program can branch to.

 Memory address (Hexadecimal representation): Similar to the Program.csv file, this

field represents the address of the corresponding label.

4.1.2.2 Classes

4.1.2.2.1 iAssembler (Interface)

The iAssembler interface defines the methods any assembler class needs to implement. All

assemblers, the default one and the auto-generated ones, will implement this interface.

4.1.2.2.2 Assembler

Implements the iAssembler interface. This is the default system's assembler. Its purpose is to

load the Program.dat file and feed it to the assembler's parser.

Whenever a new instruction set is generated, a copy of this class is generated as well,

adapted to invoke the appropriate parser. The new copy's name includes the new

instruction set's name as a prefix.

Mano CPU Emulator Generator

October 12, 2013

 30

4.1.2.2.3 sym

This class defines the constant symbols that represent the tokens known to the lexer. The

know tokens are:

 NUMBER: A numerical value in a decimal, hexadecimal or binary representation.

 NEGATIVE: The negative sign ('-').

 EOF: End of File.

 ORG: Short for "organize" – A command that instructs the assembler to insert new

content to a specific memory address.

 BIN: Notifies the assembler that the following numerical value has a binary

representation.

 DEC: Notifies the assembler that the following numerical value has a decimal

representation.

 HEX: Notifies the assembler that the following numerical value has a hexadecimal

representation.

 ID: Defines an identifier token. An identifier can be any name given to a label, or any

command.

 END: The keyword 'END' represents the end of the program.

 COMMA: The comma sign (',').

 NEWLINE: A character representing the end of the current line.

 error: Defines a token that does not match any know pattern.

4.1.2.2.4 Lexer

The Lexer is a lexical analyzer. It analyzes the program file, returning the type, and when

applicable, the value of each of the tokens it encounters. The types are defined in the sym

class.

4.1.2.2.5 parser

The parser is a syntactical analyzer and it serves two functions:

 Syntax validation: The parser validates that the program is syntactically correct.

 Compilation: The parser translates the Program.dat file into a Program.csv file. In

addition, it generates a VarTable.csv file that corresponds to the program being

assembled.

Whenever a new instruction set is generated, a copy of this class is generated as well,

adapted to recognize the new instruction set and the way it should be translated into a

pseudo-binary file. The new copy's name includes the new instruction set's name as a prefix.

4.1.3 Parser

The Parser package is used to generate new instruction sets according to given template

files. This package implements the instruction set generator (Figure ‎4-7).

4.1.3.1 Input / Output

The parser uses one input file and generates five output files. The Java code files are

compiled into class files and deleted afterwards by the Compiler class.

Mano CPU Emulator Generator

October 12, 2013

 31

4.1.3.1.1 Template.dat

The Template.dat file is the input file for the parser. It contains the instruction set template

as it was written by the instruction set editor. The content of this file is loaded into the

compiler, and is then compiled to create the assembler and instruction set.

4.1.3.1.2 Assembler.cup

This file is used by the Compiler class to generate the sym, Parser and Assembler Java

classes. The file defines the syntactic rules for the assembler's syntactical analyzer.

4.1.3.1.3 Assembler.java

The Assembler.java file implements a new assembler class. The class is generated using the

name of the new instruction set as a prefix for the newly generated class name.

4.1.3.1.4 sym.java

This file is generated automatically by Java CUP, but it is not needed, as it is identical to the

sym class used by the default assembler.

4.1.3.1.5 Parser.java

The Parser.java file implements the assembler's parser class. The class is generated using the

name of the new instruction set as a prefix for the newly generated class name.

4.1.3.1.6 UCode.java

The UCode.java file implements the new instruction set. The class is generated using the

name of the new instruction set as a prefix for the newly generated class name.

4.1.3.2 Classes

4.1.3.2.1 Compiler

The Compiler class is used to load the Template.dat file and feed it to the compiler's parser.

After generating all the Java code needed for a new assembler and instruction set, the

compiler compiles those classes into Java Bytecode. In addition, the compiler deletes the

source code. The assembler's Lexer class Bytecode is copied from the 'Resources' directory,

as it is the same as the default's assembler and does not need to be compiled again.

4.1.3.2.2 sym

This class defines the constant symbols that represent the tokens known to the lexer. The

know tokens are divided into three states:

4.1.3.2.2.1 Regular Tokens

Regular tokens have no special state. They can be divided into different classifications:

4.1.3.2.2.1.1 Keywords

The keywords are words used for a specific functionality.

 FORMAT: Indicates the start of the instruction format section.

 ACCESSMODES: Indicates that the following code defines the access modes known

to the assembler.

Mano CPU Emulator Generator

October 12, 2013

 32

 TAG: When defining the format of an instruction, indicates the location a label

should be placed when assembled.

 OPCODE: Indicates that the following value should be translated into an OpCode

when assembled.

 AM: When defining the format of an instruction, indicates the location the access

mode should be placed when assembled.

 CODE: Indicates the start of the instruction set's code section.

 END: Indicates the end of an assembly instruction.

 HLT: Indicates the end of execution.

4.1.3.2.2.1.2 Component Instructions

These tokens represent commands performed on a component directly.

 COMPLEMENT: Indicates a bitwise NOT should be performed.

 INCREMENT: Indicates the value of the component should be increased by one.

 CHANGED: Indicates a flag change status needs to be checked.

 CLEAR: Indicates that the component's value should be set to zero if it is a register,

or to false if it is a flag.

 SET: Indicates that a flag should be set to true.

4.1.3.2.2.1.3 Assignment Operators

These are operators that define different types of assignments.

 A_ASSIGN: Assignment between components.

 E_ASSIGN: Assignment of a numerical value to a variable in the system.

 F_ASSIGN: Assignment of an instruction format to an instruction.

4.1.3.2.2.1.4 Instruction Set Structure Commands

These tokens dictate the format of the instruction set class.

 CYCLE: Indicates the cycle number for a group of micro-operations.

 DECIMAL: Indicates that the value should be used as an integer by the system.

 IF: Indicates a Boolean condition check.

 AND: Indicates an AND operator used in an 'if' clause.

 OR: Indicates an OR operator used in an 'if' clause.

 NOT: Indicates a NOT operator used in an 'if' clause.

4.1.3.2.2.1.5 Brackets

These tokens represent different kinds of brackets.

 L_TRIANGULAR, R_TRIANGULAR: '<' and '>' respectively.

 L_CURLY, R_CURLY: '{' and '}' respectively.

 L_SQUARE, R_SQUARE: '[' and ']' respectively.

 R_BRACKET, L_BRACKET: '(' and ')' respectively.

4.1.3.2.2.1.6 Punctuation Marks

These tokens represent the different punctuation marks used.

Mano CPU Emulator Generator

October 12, 2013

 33

 COLON: The colon sign (':').

 SEMICOLON: The semicolon sign (';').

 COMMA: The comma sign (',').

 HYPHEN: The hyphen sign ('-').

4.1.3.2.2.1.7 Identifiers

These tokens are used to identify actions and values.

 ID: Represents a set of alphanumerical values. An ID can reference a command or a

label.

 NUMBER: Represents a numerical value. Numbers can be represented in decimal,

hexadecimal or binary representations.

4.1.3.2.2.1.8 System Tokens

These tokens are used by the parser while analyzing the template file.

 EOF: End of File.

 error: Defines a token that does not match any know pattern.

4.1.3.2.2.2 ALU Tokens

These tokens represent operations performed by the ALU.

 ALU_SUM: Perform the 'sum' operation.

 ALU_SUB: Perform the 'subtract' operation.

 ALU_MULT: Perform the 'multiply' operation.

 ALU_DIV: Perform the 'divide' operation.

 ALU_MOD: Perform the 'modulo' operation.

 ALU_EQ: Perform the 'equal' operation.

 ALU_NE: Perform the 'not equal' operation.

 ALU_GR: Perform the 'greater' operation.

 ALU_LS: Perform the 'less than' operation.

 ALU_GE: Perform the 'greater or equal' operation.

 ALU_LE: Perform the 'less than or equal' operation.

 ALU_NOT: Perform the 'not' operation.

 ALU_AND: Perform the 'and' operation.

 ALU_OR: Perform the 'or' operation.

 ALU_XOR: Perform the 'xor' operation.

 ALU_L_SHIFT: Perform the 'shift left' operation.

 ALU_R_SHIFT: Perform the 'shift right' operation.

 ALU_FILL_ZERO: Use 0 as a filler in a shift operation.

 ALU_FILL_ONE: Use 1 as a filler in a shift operation.

4.1.3.2.2.3 String Tokens

The STRINGVAL token represents a string of alphanumerical characters encased by two

double quote (") signs.

Mano CPU Emulator Generator

October 12, 2013

 34

4.1.3.2.3 Lexer

The Lexer class is a lexical analyzer. It analyzes the template file, returning the type, and

when applicable, the value of each of the tokens it encounters. The types are defined in the

sym class.

4.1.3.2.4 parser

The parser is a syntactical analyzer and it serves two functions:

 Syntax validation: The parser validates that the template file is syntactically correct.

 Compilation: The parser scans the Template.dat and generates the Assembler.cup,

Assembler.java and UCode.java files.

Mano CPU Emulator Generator

October 12, 2013

 35

4.1.4 GUI

The GUI package implements all the GUI elements needed to create the user interface. The

GUI consists of a main user interface and two file editors. The editors can be launched from

the main window (Figure ‎4-8).

4.1.4.1 Input / Output

The GUI uses two files:

4.1.4.1.1 Metadata.dat

This file stores the name of the currently used instruction set. At startup, this file is checked,

and the last instruction set is reloaded. If the instruction set changes, this file is updated.

4.1.4.1.2 VarTable.csv

This file is created by the assembler, and is used to create a table of contents of the different

variables and labels for the user. This table contains the name of each label and its memory

address.

4.1.4.2 Classes

4.1.4.2.1 mainWindow

The mainWindow class generates the main user interface. This window is the user's control

panel. The main window can be used by the user to monitor the system's state during the

program's execution, or load programs and instruction set templates using the editors. The

execution of a program can be set to run from start to finish, or to run in a step-by-step

mode. The step-by-step mode can be toggled between the assembly state, performing a full

assembly command every step, and the advanced micro-operation state, that performs one

micro-operation at a time.

4.1.4.2.2 ProgramEditor

The program editor is a simple text editor used by the programmer to load and edit

programs. The editor enables the programmer to load text files containing previously

written programs and to save the program to a file. It is also used to load a program to the

emulator (loaded programs are not assembled automatically). The default program shown in

the editor is the last program loaded. The editor loads and edits the Program.dat file.

4.1.4.2.3 TemplateEditor

The template editor is a simple text editor used by the instruction set editor to load and edit

new instruction set templates. The template editor enables the instruction set editor to load

text files containing previously written instruction set templates and to save the instruction

set template to a file. It is also used to load an instruction set template to the emulator

(loaded instruction set templates are not compiled automatically). The default template

shown in the editor is the last template loaded. The editor loads and edits the Template.dat

file. An additional field in the editor sets the instruction set's name. This name will be used

to define the instruction set and all related classes and files. Whenever a template is loaded

from an existing file, the file's name becomes the name of the instruction set (it can be

edited later).

Mano CPU Emulator Generator

October 12, 2013

 36

4.1.4.2.4 TimeOutDialog

To prevent badly written programs from running indefinitely, causing the user to kill the

process forcefully using the operation system, a time out dialog will appear if the program

exceeded a predetermined timeout limit. The timeout defines the upper limit of operations

executed consecutively without reaching the end of the program. When the timeout dialog

appears, the user may choose to terminate the program, or to reset the timeout counter

and resume execution. The timeout dialog will reappear if the timeout limit was reached

again. The upper limit is defined by the TIMEOUT constant.

4.2 File System Structure
The system uses five directories:

4.2.1 AppData

This directory holds all the files used during runtime:

 DataTransferMap.csv

 Program.csv

 VarTable.csv

 Metadata.dat

 Program.dat

 Template.dat

4.2.2 Resources

This directory holds resources needed for the system to function. It contains three files:

 java-cup-11a.jar: Used when compiling Assembler.cup into a working assembler.

 Lexer.class: Is copied into the instruction set's directory whenever a new instruction

set is generated.

 ManoCPU.jar: Is used to hold class definitions used in compilations of new

instruction sets.

4.2.3 Programs

This directory can hold program text files to be loaded into the system. Programs can be

loaded from anywhere, but this is the default directory.

4.2.4 Templates

This directory can hold text files containing instruction set templates to be loaded into the

system. Templates can be loaded from anywhere, but this is the default directory.

4.2.5 Machines

Each instruction set, once compiled, is stored in a directory with that instruction set's name

under the "Machines" directory.

Mano CPU Emulator Generator

October 12, 2013

 37

4.3 System Design
This is a detailed technical description of the system's design. A high level overview can be

found in the system structure section.

4.3.1 DFD 0

Mano CPU
Emulator

AppData

Resources

Programs

Templates

Machines

Figure ‎4-1: DFD 0

Mano CPU Emulator Generator

October 12, 2013

 38

4.3.2 DFD 1

Machines

TemplatesPrograms

P
ro

gr
am

.c
sv

M
et

ad
at

a
.

d
at

Te
m

p
la

te
.

d
at

Pr
og

ra
m

.d
at

D
at

aT
ra

n
sf

er
M

ap
.c

sv

V
ar

Ta
b

le
.

cs
v

AppData ResourcesMano CPU
Emulator

java-cup-11a.jar ManoCPU.jar Lexer.class

Figure ‎4-2: DFD 1

Mano CPU Emulator Generator

October 12, 2013

 39

4.3.3 Emulator

NegativeIdException

- mMessage : String

+ NegativeIdException()

+ NegativeIdException(String)

+ get_message() : String

ClassName

-memberName

-memberName

ClassName

-memberName

-memberName

ClassName

-memberName

-memberName

ClassName

-memberName

-memberName

Figure ‎4-3: Emulator package

Mano CPU Emulator Generator

October 12, 2013

 40

4.3.3.1 Global

<<Interface>>

Constants

<<Interface>>

iInstructionsUCode

Loader

Value

DataTransferMap

ProgramLine Program

Processor

InstructionsUCode

Emulator

 Figure ‎4-4: Global package

Mano CPU Emulator Generator

October 12, 2013

 41

4.3.3.1.1 Loader

Loader

- mTemplateName : String

+ Loader(String)

+ loadClass(String) : Class<?>

+ findClass(String) : Class<?>

- loadClassData(String) : byte[]

4.3.3.1.2 Constants

The members of the Constants interface are

detailed in the system structure section. It has

no methods.

<<Interface>>

Constants

4.3.3.1.3 DataTransferMap

DataTransferMap

- mMap : int[][]

+ DataTransferMap(String)

+ nextInRoute(int, int) : int

4.3.3.1.4 ProgramLine

ProgramLine

- mAddress : Value

+ ProgramLine(Value, Value, String)

+ get_metaCommand() : String

- mContent : Value

- mMetaCommand : String

+ get_address() : Value

+ get_content() : Value

4.3.3.1.5 Program

Program

- mLines : ArrayList<ProgramLine>

+ clear() : void

+ addLine(ProgramLine) : void

+ getLines() : ProgramLine[]

4.3.3.1.6 Value

Value

- mSize : int

_ toDecimal(boolean[]) : int

- mContent : boolean[]

+ Value(int)

+ Value(int, int)

+ Value(boolean[])

+ Value(String)

+ set_content(boolean[]) : void

+ set_content(int) : void

+ get_decimal() : int

+ get_content() : boolean[]

+ get_size() : int

+ set_content(Value) : void

+ set_content(String) : void

_ toBinary(int, int) : boolean[]

+ get_hexadecimal() : String

_ toBinary(String) : boolean[]

_ toHexadecimal(boolean[]) : String

_ toDecimal(String) : int

+ increment() : void

+ complement() : void

+ toString() : String

_ toHexadecimal(String) : String

_ toHexadecimal(int, int) : String

Mano CPU Emulator Generator

October 12, 2013

 42

4.3.3.1.7 Emulator

Emulator

- mManoCPU: Processor

+ getSystemComponent(int) : String

+ run(boolean) : boolean

+ assemble() : void

+ getAssemblyCommand() : String

- mUCode : iInstructionsUCode

- mAssembler : iAssembler

- mCycleDescription : String

- mAssemblyCommand : String

+ getCycleDescription() : String

+ reset() : void

+ getProgram() : void

+ notifyInput() : void

+ getSystemMemory() : String[][]

+ stopProgram() : void

+ notifyOutput() : void

+ loadTemplate(String) : void

+ loadDefaultTemplate() : void

4.3.3.1.8 iInstructionsUCode

<<Interface>>

iInstructionsUCode

+ setCPU(Processor) : void

+ t15() : String

+ t0() : String

+ t14() : String

+ t9() : String

+ t11() : String

+ t13() : String

+ t12() : String

+ t10() : String

+ t8() : String

+ t7() : String

+ t6() : String

+ t1() : String

+ t5() : String

+ t4() : String

+ t3() : String

+ t2() : String

4.3.3.1.9 InstructionsUCode

InstructionsUCode

/+ setCPU(Processor) : void

/+ t15() : String

/+ t0() : String

/+ t14() : String

/+ t9() : String

/+ t11() : String

/+ t13() : String

/+ t12() : String

/+ t10() : String

/+ t8() : String

/+ t7() : String

/+ t6() : String

/+ t1() : String

/+ t5() : String

/+ t4() : String

/+ t3() : String

/+ t2() : String

- mCPU : Processor

- mCycleDescription : String

+ InstructionsUCode()

Mano CPU Emulator Generator

October 12, 2013

 43

4.3.3.1.10 Processor
Processor

_ constantTable : HashMap<String, Integer>

- s : Flag

- e : Flag

- r : Flag

- ien : Flag

+ mComponentsList : DataComponent[]

- mInstructionTimer : InstructionTimer

- mTransferMap : DataTransferMap

- mOpCode : int

- i : Flag

- fgo : Flag

- ac : DataRegister

- pc : AddressRegister

- fgi : Flag

- ar : AddressRegister

- dr : DataRegister

- ir : DataRegister

+ set_opCode(int) : void

- tr0 : DataRegister

- tr1 : DataRegister

- inpr : IORegister

- outr : IORegister

- bus : Bus

+ Processor()

- memory : Memory

- alu : ALU

+ moveData(Value, int) : void

+ moveData(int, int) : void

+ nextCycle() : void

+ checkOpCode(int) : boolean

+ halt : void

+ resetTimer() : void

+ loadProgram(Program) : void

+ get_cycleNum() : int

+ get_opCode() : int

Mano CPU Emulator Generator

October 12, 2013

 44

4.3.3.2 Components

<<Abstract>>

Component

<<Interface>>

DataComponent

Memory

DataRegister

ALU

AddressRegister

Bus

InstructionTimer

Flag

IORegister

<<Abstract>>

Register

OutputInput

Figure ‎4-5: Components package

Mano CPU Emulator Generator

October 12, 2013

 45

4.3.3.2.1 Component

<<Abstract>>

Component

+ set_name(String) : void

+ set_id(int) : void

- mId : int

- mName : String

+ get_name() : String

+ get_id() : int

4.3.3.2.2 InstructionTimer

InstructionTimer

+ get_currentCycle() : int

+ InstructionTimer(int, String)

- mCurrentCycle : int

- mReset : boolean

+ reset() : void

+ pulse() : void

4.3.3.2.3 DataComponent

This class has no members and all methods

are implemented in other classes.

<<Interface>>

DataComponent

4.3.3.2.4 Bus

Bus

- mValue : Value

+ Bus(int, String)

/+ set_value(Value) : void

/+ get_row(int) : Value

/+ get_value() : Value

/+ get_value(int, int) : Value

/+ get_value(int) : Value

/+ evaluateAsBoolean() : boolean

/+ get_decimal(int, int) : int

/+ get_decimal(int) : int

/+ get_decimal() : int

/+ evaluateAsBoolean(int, int) : boolean

/+ evaluateAsBoolean(int) : boolean

4.3.3.2.5 Flag

Flag

- mValue : boolean

+ Flag(int, String)

/+ set_value(Value) : void

/+ get_value() : Value

/+ evaluateAsBoolean() : boolean

/+ clear() : void

/+ set() : void

/+ get_decimal() : int

- mChanged : boolean

- mBuffer : boolean

/+ complement() : void

/+ changed() : boolean

/+ update() : void

Mano CPU Emulator Generator

October 12, 2013

 46

4.3.3.2.6 Register

<<Abstract>>

Register

- mValue : Value

/+ set_value(Value) : void

/+ get_value() : Value

/+ evaluateAsBoolean() : boolean

/+ disableWrite() : void

/+ enableWrite() : void

/+ get_decimal() : int

- mWriteEnable : boolean

- mBuffer : Value

/+ clear() : void

/+ isWritable() : boolean

/+ update() : void

/+ evaluateAsBoolean(int) : boolean

/+ evaluateAsBoolean(int, int) : boolean

/+ get_decimal(int, int) : int

/+ get_decimal(int) : int

/+ increment() : void

/+ set_value(int, Value) : void

/+ get_value(int) : Value

/+ get_value(int, int) : Value

/+ set_value(int, int, Value) : void

4.3.3.2.7 DataRegister

DataRegister

+ DataRegister(int, String)

4.3.3.2.8 AddressRegister

AddressRegister

+ AddressRegister(int, String)

4.3.3.2.9 IORegister

IORegister

+ IORegister(int, String)

4.3.3.2.10 Memory

Memory

- mMemory : Value[]

+ Memory(int, String, AddressRegister)

/+ set_value(Value) : void

/+ get_row(int) : Value

/+ get_value() : Value

/+ get_value(int, int) : Value

/+ get_value(int) : Value

/+ evaluateAsBoolean() : boolean

/+ get_decimal(int, int) : int

/+ get_decimal(int) : int

/+ get_decimal() : int

/+ evaluateAsBoolean(int, int) : boolean

/+ evaluateAsBoolean(int) : boolean

- mBuffer : Value[]

- mMetaCommand : String[]

- mAddress : AddressRegister

- mWriteEnable : boolean

/+ set_metaCommand(String) : void

/+ get_metaCommand() : String

/+ enableWrite() : void

/+ update() : void

/+ isWritable() : boolean

/+ disableWrite() : void

Mano CPU Emulator Generator

October 12, 2013

 47

4.3.3.2.11 ALU ALU

- mInput0 : Input

+ ALU(int, String, Flag)

/+ get_input0() : DataComponent

/+ enableWrite0() : void

/+ get_value() : Value

/+ get_value(int, int) : Value

/+ get_value(int) : Value

/+ evaluateAsBoolean() : boolean

/+ get_decimal(int, int) : int

/+ get_decimal(int) : int

/+ get_decimal() : int

/+ evaluateAsBoolean(int, int) : boolean

/+ evaluateAsBoolean(int) : boolean

- mBuffer : Value[]

- mEndCarry : Flag

/+ get_input1() : DataComponent

/+ get_output() : DataComponent

/+ enableWrite1() : void

/+ passThrough0() : void

/+ isWritable0() : boolean

/+ disableWrite0() : void

- mInput1 : Input

- mOutput : Output

/+ disableWrite1() : void

/+ isWritable1() : boolean

/+ passThrough1() : void

/+ sum() : void

/+ greaterOrEqual() : void

/+ subtract() : void

/+ lessThan() : void

/+ multiply() : void

/+ xor() : void

/+ complement1() : void

/+ divide() : void

/+ and() : void

/+ modulo() : void

/+ or() : void

/+ complement0() : void

/+ greaterThan() : void

/+ equal() : void

/+ notEqual() : void

/+ shiftRight0() : void

/+ shiftRight1() : void

/+ lessOrEqual() : void

/+ shiftLeft1() : void

/+ shiftLeft0() : void

4.3.3.2.11.1 Input

Input

- mValue : Value

+ Input(int, String)

/+ get_value() : Value

/+ get_value(int, int) : Value

/+ get_value(int) : Value

/+ evaluateAsBoolean() : boolean

/+ get_decimal(int, int) : int

/+ get_decimal(int) : int

/+ get_decimal() : int

/+ evaluateAsBoolean(int, int) : boolean

/+ evaluateAsBoolean(int) : boolean

/+ enableWrite() : void

/+ isWritable() : boolean

/+ disableWrite() : void

- mWriteEnable : boolean

/+ set_value(Value) : void

4.3.3.2.11.2 Output

Output

- mValue : Value

+ Output(int, String)

/+ get_value() : Value

/+ get_value(int, int) : Value

/+ get_value(int) : Value

/+ evaluateAsBoolean() : boolean

/+ get_decimal(int, int) : int

/+ get_decimal(int) : int

/+ get_decimal() : int

/+ evaluateAsBoolean(int, int) : boolean

/+ evaluateAsBoolean(int) : boolean

/+ set_value(Value) : void

Mano CPU Emulator Generator

October 12, 2013

 48

4.3.4 Assembler

<<Interface>>

iAssembler

+ assemble() : void

Assembler

+ Assembler()

/+ assemble() : void

sym

Parser

Lexer

Figure ‎4-6: Assembler package

4.3.5 Parser

Compiler

+ Compile(String) : void

_ compileParser(String, String) : void

sym

Parser

Lexer

 Figure ‎4-7: Parser package

4.3.6 GUI

mainWindow

+ mainWindow()

+ setMemPanel(String[][]) : void

ProgramEditor

TemplateEditor

+ setVarPanel() : void

- setTemplateList() : void

_ main(String) : void

- mWidth : int

- mHeight : int

+ ProgramEditor(JPanel)

- mWidth : int

- mHeight : int

+ TemplateEditor(JPanel)

TimeOutDialog

- mEmulator : Emulator

+ TimeOutDialog(Emulator)

- onCancel() : void

- onStop() : void

Figure ‎4-8: GUI package

Mano CPU Emulator Generator

October 12, 2013

 49

4.4 Compilers
The system makes uses of two compilers. One serves as the instruction set compiler and the

other is the assembler. The assembler is auto-generated by the instruction set compiler.

4.4.1 Instruction Set Compiler

The instruction set compiler has two functions:

 Generate an assembler.

 Generate an instruction set implementation.

To do that, the template file has two sections:

 Format: Defines the instruction format the assembler should follow.

 Code: Describes the code implementing the instruction set.

The template consists of a format followed by the code or vice versa.

4.4.1.1 Symbols

While parsing, the template is divided into symbols (tokens). Each symbol has a definition.

Some symbols have values.

4.4.1.1.1 Keywords

 FORMAT: "format"

 ACCESSMODES: "access_modes"

 TAG: "<TAG>", "<LABEL>" or "<VAR>"

 OPCODE: "opcode"

 AM: " <AM>" or " <A_MODE>"

 CODE: "code"

 END: "end"

 HLT: "hlt"

4.4.1.1.2 Component Instructions

 COMPLEMENT: ".cmp"

 INCREMENT: ".inc"

 CHANGED: ".chn"

 CLEAR: ".clr"

 SET: ".set"

4.4.1.1.3 Assignment Operators

 A_ASSIGN: "<-"

 E_ASSIGN: "="

 F_ASSIGN: "=>"

4.4.1.1.4 String Tokens

 STRINGVAL: A set of characters encased in double-quotes (").

Mano CPU Emulator Generator

October 12, 2013

 50

4.4.1.1.5 Instruction Set Structure Commands

 CYCLE: An upper case letter 'T', only if followed by a number.

 DECIMAL: '#'

 IF: "if"

 AND: "&&"

 OR: "||"

 NOT: '!'

4.4.1.1.6 Brackets

 L_TRIANGULAR: '<'

 R_TRIANGULAR: '>'

 L_CURLY: '{'

 R_CURLY: '}'

 L_SQUARE: '['

 R_SQUARE: ']'

 R_BRACKET: '('

 L_BRACKET: ')'

4.4.1.1.7 Punctuation Marks

 COLON: ':'

 SEMICOLON: ';'

 COMMA: ','

 HYPHEN: '-'

4.4.1.1.8 ALU Tokens

 ALU_SUM: '+'

 ALU_SUB: '-'

 ALU_MULT: '*'

 ALU_DIV: '/'

 ALU_MOD: '%'

 ALU_EQ: "=="

 ALU_NE: "!="

 ALU_GR: '>'

 ALU_LS: '<'

 ALU_GE: ">="

 ALU_LE: "<="

 ALU_NOT: '~'

 ALU_AND: '&'

 ALU_OR: '|'

 ALU_XOR: '^'

 ALU_L_SHIFT: "<<"

 ALU_R_SHIFT: ">>"

 ALU_FILL_ZERO: "(0)"

 ALU_FILL_ONE: "(1)"

Mano CPU Emulator Generator

October 12, 2013

 51

4.4.1.1.9 Identifiers

Identifiers have values.

 ID: Uppercase letter followed by any number of uppercase letters and/or digits.

 NUMBER: A set of at least one digit, followed by any number of digits.

4.4.1.1.10 System Tokens

 EOF: The end of the file was reached.

 error: A token did not match any of the known tokens.

4.4.1.2 Format Grammar

format  "format" "{" access_modes command_format_list "}"

access_modes  "access_modes" "<" access_modes_list ">"

access_modes_list  access_modes_list "," access_mode

access_modes_list  access_mode

access_mode  "[" ID "]" "=" STRINGVAL

access_mode  "[" "]" "=" STRINGVAL

command_format_list  command_format_list command_format

command_format_list  command_format

command_format  ID "=>" element_list

command_format  ID "=>" STRINGVAL

element_list  element_list element

element_list  element

element  "opcode" "<" NUMBER ">" "(" NUMBER ")"

element  TAG

element  AM

4.4.1.3 Code Grammar

epsilon  ε

u_code  "code" "{" command_list "}"

command_list  command_list command

command_list  command

command  "T" NUMBER "(" condition_list ")" : u_op_list ";"

Mano CPU Emulator Generator

October 12, 2013

 52

condition_list  "(" condition_list ")"

condition_list  condition_list "&&" condition_list

condition_list  condition_list "||" condition_list

condition_list  "!" condition_list

condition_list  condition

condition  ID range

condition  ID ".chn"

condition  "opcode" "(NUMBER ")"

u_op_list  u_op_list "," u_op

u_op_list  u_op

u_op  ID component_command

u_op  "if" "(" condition_list ")" "{" u_op_list "}"

u_op  alu_command

u_op  move

u_op  asign_op_code

u_op  "end"

u_op  "hlt"

component_command  ".cmp"

component_command  ".inc"

component_command  ".clr"

component_command  ".set"

move  ID "[" NUMBER "-" NUMBER "]" "<-" ID range

move  ID "[" NUMBER "]" "<-" ID range

move  ID "<-" ID "[" NUMBER "-" NUMBER "]"

move  ID "<-" ID "[" NUMBER "]"

move  ID "<-" ID

move  ID "<-" alu_command

Mano CPU Emulator Generator

October 12, 2013

 53

asign_op_code  "opcode" "=" "#" ID range

alu_command  "<" ID ":" ID alu_b_op ID ">"

alu_command  "<" ID ":" NUMBER ":" ID alu_o_op ">"

alu_command  "<" ID ":" NUMBER ":" alu_o_op ID ">"

alu_command  "<" ID ":" NUMBER ":" ID alu_shift_side alu_shift_filler NUMBER ">"

alu_b_op  "=="

alu_b_op  "!="

alu_b_op  ">"

alu_b_op  "<"

alu_b_op  ">="

alu_b_op  "<="

alu_b_op  "&"

alu_b_op  "|"

alu_b_op  "^"

alu_b_op  "+"

alu_b_op  "-"

alu_b_op  "*"

alu_b_op  "/"

alu_b_op  "%"

alu_o_op  "~"

alu_shift_side  "<<"

alu_shift_side  ">>"

alu_shift_filler  (0)

alu_shift_filler  (1)

range  "[" NUMBER "-" NUMBER "]"

range  "[" NUMBER "]"

range  epsilon

Mano CPU Emulator Generator

October 12, 2013

 54

4.4.2 Assembler

The assembler is used to translate assembly programs into pseudo-binary executables.

During parsing, the assembler generates a map of labels to their addresses, and translates

the commands into pseudo-binary. If a command uses a label, that command's is saved as a

pseudo-binary OpCode with a special label identifier. Once the whole program has been

parsed, all label identifiers are translated into their pseudo-binary addresses. Parts of the

assembler are auto-generated by the instruction set compiler.

4.4.2.1 Symbols

While parsing, the template is divided into symbols (tokens). Each symbol has a definition.

Some symbols have values.

4.4.2.1.1 Keywords

 ORG: "ORG"

 END: "END"

 HEX: "HEX"

 DEC: "DEC"

 BIN: "BIN"

4.4.2.1.2 Punctuation Marks

 COMMA: ','

 NEGATIVE: '-'

 NEWLINE: '\n', '\r' or "\r\n"

4.4.2.1.3 Identifiers

Identifiers have values.

 ID: A letter or underscore followed by any number of letters, digits and/or

underscores.

 NUMBER: There are three definitions for a number

o Decimal: A set of at least one digit, followed by any number of digits.

o Binary: A set of one or more zeroes and ones.

o Hexadecimal: A zero followed by one or more digits and/or uppercase

letters in the range of 'A' to 'F'.

4.4.2.1.4 System Tokens

 EOF: The end of the file was reached.

 error: A token did not match any of the known tokens.

Mano CPU Emulator Generator

October 12, 2013

 55

4.4.2.2 Constant Grammar

Constant grammar remains the same for any given instruction set.

epsilon  ε

program  command_list "END"

command_list  command_list command_line

command_list  command_line

command_line  tag_declaration operation NEWLINE

command_line  tag_declaration var_declaration NEWLINE

command_line  var_declaration NEWLINE

command_line  operation NEWLINE

command_line  "ORG" NUMBER NEWLINE

command_line  NEWLINE

tag_declaration  ID ","

var_declaration  number

number  "HEX" NUMBER

number  "HEX" "-" NUMBER

number  "DEC" NUMBER

number  "DEC" "-" NUMBER

number  "BIN" NUMBER

4.4.2.3 Generated Grammar

This grammar changes whenever an instruction set is generated. For each instruction set, a

new list defining legal IDs and their values is generated.

access_mode  ID

access_mode  epsilon

operation  ID ID access_mode

operation  ID

Mano CPU Emulator Generator

October 12, 2013

 56

5 Development Environment

5.1 Programming Paradigm
The system is built using Object-Oriented Programming. The system is composed of various

classes, each with its own purpose. OOP was chosen for its ability to generate objects with

specific behavior. The lowest level of implemented classes mimics the behavior of real

hardware components, and are then used together to construct more complex objects (such

as a processor). The system simulates real connections between the different components

within the CPU.

The division into different packages allows for changes to be done relatively easily. The GUI,

for example, can be completely redesigned and reattached to the system. A simpler system

can be generated by disconnecting the instruction set generator. In that case, the default

instruction set and assembler will be used.

5.2 Programming Language
The system was built using the Java programming language for two main reasons:

5.2.1 Platform Portability

The system is designed for students. As such, it may need to run on different platforms and

operating systems. Both of the alternatives that were considered, C++ and C#, are much less

portable. C++ for the need of a different compilation for each platform and C# for not having

a well adapted framework for operation systems other than Windows.

5.2.2 Dynamic Class Loading

C++ operates much closer to the hardware level and has less abstraction levels. While that

makes hardware simulation much easier, C++ is a fully compiled language, thus forcing the

system to restart after every change done to the code. Since one of the core capabilities of

the system is the ability to change its behavior during runtime, the inability to reload classes

dynamically becomes very problematic.

5.3 System Limitations
The system, like any other, has some limitations. Some of them due to the way the system

was designed and built, and some are inherent from the software domain.

5.3.1 Architectural Restrictions

As currently implemented, the system is restricted by its architecture. There are three main

restrictions:

5.3.1.1 Static Architecture

While the instruction set can be customized, it is still bound by the components used in the

basic Mano architecture (with an added temporary register). Adding new components

cannot be done easily and requires editing the Java code of the emulator.

Mano CPU Emulator Generator

October 12, 2013

 57

5.3.1.2 Available Component Types

Some components were not modeled because they were not needed to emulate the Mano

CPU architecture. One example is the 'Partial Register', which is a register that represents a

segment of a larger register (used in the x86 and other architecture designs). Other

examples can be decoders and multiplexers.

5.3.1.3 No Advanced Features

Features like branch prediction, command pipeline, out of order execution and other

advanced features commonly used in modern processors cannot be implemented because

of the restrictive architecture.

5.3.2 User Interface

At this point, the user interface supports most of the system's functionality, but it has some

known flaws:

 There is no I/O device emulation in the GUI (Supported by the system).

 The GUI is not completely multi-threaded, preventing some features from working in

parallel at the same time.

 The GUI was designed for functionality purposes, and does not provide the best user

experience possible.

5.4 Tools

5.4.1 IDE

The whole system was implemented, built and tested using the Community Edition of Jet

Brains' IntelliJ IDEA v12. It was chosen because it integrates code auto-completion, static

error notification and linting, automatic module import functionality, basic module format

generation, GUI generator, debugger and a JUnit testing module.

5.4.2 Diagrams

All diagrams were creating Microsoft's Visio 2013 Professional.

5.4.3 Compiler Generators

All compilers (instruction set compiler and assembler), pre-generated or auto-generated, are

created using JFlex for the lexical analyzer and Java CUP for the syntactical analyzer. JFlex

and Java CUP are Java implementations of the Lex/YACC compiler generation software.

5.5 Testing
Unit testing was done using JUnit. Full system testing was done by generating programs and

instruction sets. In both cases legal input was introduced to prove correct functionality and

illegal input was provided to assure error reporting and system recovery were functioning

correctly.

Mano CPU Emulator Generator

October 12, 2013

 58

6 User Guide

6.1 Error Handling

6.1.1 Syntax Errors

Like any other software language, the assembly language and the template file have their

own syntax. If not followed perfectly, the text cannot be parsed into a functioning program

or instruction set. To address this problem, both the compiler and the assembler check the

syntax and notify the user if any syntax errors were found. In that case, the operation is

aborted and the system remains in the last functioning configuration.

6.1.2 System Crash

System crashes cannot be prevented if the source of the failure is external. To prevent loss

of work, the system allows the user to save the work done so far. In addition, the system

saves the last legal memory content, program and template, and reloads them whenever

they are needed.

6.1.3 Infinite Loops

A programmer who is not careful might create an infinite loop. After a set amount of cycles,

if the program did not end, a notification will let the user decide whether to stop or keep

running. This notification can trigger more than once.

6.1.4 Instruction Set-Assembler Mismatch

When changing the configuration of an instruction set, the user is not bound by the existing

assembly language. Commands can be added, renamed or deleted. An assembly command

unknown to the assembler cannot be used, even if correctly defined, because it cannot be

added to the executable file. To solve this problem, an instruction set editor can change

both the instruction set and the assembler. A mismatch can still occur if the memory is not

reloaded, leaving old assembly command representations, but avoiding these errors is under

the responsibility of the user.

6.1.5 Missing Instruction Set

If the creation of an instruction set fails, the action is aborted and the last working

instruction set remains active. If the instruction set is missing when trying to reload a

previously used instruction set, the system will load a default configuration. In both cases a

notification will be given to the user.

6.2 Workflow Continuity
When generating a new instruction set, actual Java code is generated and compiled. To load

the newly compiled code, the system needs to be restarted, which has a bad effect on the

continuity of the user's workflow. To address this problem, the system uses Java's ability to

dynamically load new parts of the code that were not loaded when the system was

initialized. In this case, some of the dynamically loaded code did not exist before the system

generated it during that same run.

When editing an existing instruction set, a system restart might still be needed. In that case,

the user will be notified.

Mano CPU Emulator Generator

October 12, 2013

 59

6.3 Environment Requirements
The system was implemented using the Java programming language, thus requiring a JVM to

be installed on the user's environment. Furthermore, once a user has reached the skill level

allowing them to become an instruction set editor, the use of the instruction set generator

will generate and compile new Java code. To make that possible, the user will need a

workable JDK, and an operating system (OS) configured to allow that JDK to be accessed

directly from the command prompt or terminal.

6.4 Mano Basic Architecture
The system, as currently implemented, simulates the architecture described by M. Morris

Mano in his book 'Computer System Architecture', with one added TR register. The new

register is named TR1, and the name of the temporary register was changed from TR to TR 0.

To allow for backwards compatibility, both TR0 and TR address the same register.

6.4.1 Architecture Components

6.4.1.1 ALU

The ALU is the arithmetic and logic unit. The ALU performs arithmetical or logical operations

on a given input.

6.4.1.2 Memory

The memory is the storage unit. It holds both data and commands.

6.4.1.3 Bus

The bus is a data channel, used to transfer data from one component to another.

6.4.1.4 Flags

Flags are 1-bit components, usually used to note the occurrence of an event or a state of the

system. The flags are:

 E: "End Carry" flag. Indicates if the operation performed by the ALU had a carry.

 R: "Interrupt Request" flag. Indicates that an interrupt is waiting to be handled.

 S: "CPU Start" flag. Indicates that the CPU is executing a program.

 I: "Indirect" flag. Indicates that a given label's value should be used as a pointer.

 IEN: "Interrupts Enable" flag. Indicates that the system handles interrupts.

 FGI: "Flag Input". Indicates that new input was introduced to the CPU.

 FGO: "Flag Output". Indicates that the output device is ready to receive output.

6.4.1.5 Registers

Registers are collections of bits that store data. The registers are:

 AC (16 bits): "Accumulator". The accumulator holds the results of the ALU. It is the

only register controlled directly by the user. It holds the second operand of the ALU.

 DR (16 bits): "Data Register". The data register holds the first operand of the ALU.

 IR (16 bits): "Instruction Register". Holds the command while it is being decoded.

 TR0 (16 bits): "Temporary Register 0". Used for miscellaneous actions. Same as TR.

 TR1 (16 bits): "Temporary Register 1". Used for miscellaneous actions.

Mano CPU Emulator Generator

October 12, 2013

 60

 PC (12 bits): "Program counter". Holds the address of the next command to be

performed.

 AR (12 bits): "Address Register". Used as the index to access the memory.

 INPR (8 bits): "Input Register". Holds one byte of data received from an input device.

 OUTR (8 bits): "Output Register". Holds one byte of data to be sent to an output

device.

6.4.2 Architecture Structure

IEN ISR

E

Memory
[4095:0][15:0]

Write Read

Instruction Register (IR) [15:0]
Load Inc Clear

Data Register (DR) [15:0]
Load Inc Clear

Temporary Register 0 (TR0) [15:0]
Load Inc Clear

Temporary Register 1 (TR1) [15:0]
Load Inc Clear

Program Counter (PC) [11:0]
Load Inc Clear

Address Register (AR) [11:0]
Load Inc Clear

Output Register (OUTR) [7:0]
Load Inc Clear

Input Register (INPR) [7:0]
Load Inc Clear

Accumulator (AC) [15:0]
Load Inc Clear

ALU

FGI

FGO

Address

16

12

12

16

16

16

8

16

16

12

12

16

16

16

16

1616

8

1

Figure ‎6-1: The M. Morris Mano CPU architecture

Mano CPU Emulator Generator

October 12, 2013

 61

6.4.3 Basic Syntax and Commands

Like most programming and scripting languages, whitespaces are ignored.

6.4.3.1 Memory-Referencing Instructions

Memory-referencing instructions are commands that access the memory. These commands

use a label to declare the address accessed. An MRI command can be followed by the

'Indirect' option. In that case, the label's value will be used as a pointer.

6.4.3.1.1 AND <LABEL> [I]

Performs a bitwise AND operation between a value from the memory and the accumulator.

The result is stored in the accumulator.

6.4.3.1.2 ADD <LABEL> [I]

Sums a value from the memory into the accumulator.

6.4.3.1.3 LDA <LABEL> [I]

Load accumulator. Loads a value from the memory to the accumulator.

6.4.3.1.4 STA <LABEL> [I]

Store accumulator. Stores the value of the accumulator in the memory. Does not affect the

accumulator.

6.4.3.1.5 BUN <LABEL> [I]

Branch unconditional. Changes the address of the next command to be performed. Does not

affect the accumulator.

6.4.3.1.6 BSA <LABEL> [I]

Branch and store address. Saves the value of the program counter to the memory and

branches to the address following the given address. Does not affect the accumulator.

6.4.3.1.7 ISZ <LABEL> [I]

Increment and skip if zero. Increments a value in the memory and skips the next command if

the updated value is equal to zero. Does not affect the accumulator.

6.4.3.2 Non-Memory-Referencing Instructions

Non-memory-referencing instructions affect the system state without accessing the

memory.

6.4.3.2.1 CLA

Clear accumulator. Sets the value in the accumulator to zero.

6.4.3.2.2 CLE

Clear end carry. Sets the value of the end carry flag to zero.

6.4.3.2.3 CMA

Complement accumulator. Performs a bitwise NOT operation on the accumulator.

6.4.3.2.4 CME

Complement end carry. Performs a NOT operation on the end carry flag.

Mano CPU Emulator Generator

October 12, 2013

 62

6.4.3.2.5 CIR

Circulate right. Moves the value of each bit in the accumulator to the bit located at its right.

The rightmost bit is moved to the end carry flag and the value of the end carry flag is moved

to the leftmost bit of the accumulator.

6.4.3.2.6 CIL

Circulate left. Moves the value of each bit in the accumulator to the bit located at its left.

The leftmost bit is moved to the end carry flag and the value of the end carry flag is moved

to the rightmost bit of the accumulator.

6.4.3.2.7 INC

Increment. Increases the value of the accumulator by one.

6.4.3.2.8 SPA

Skip if positive accumulator. Skips the next command if the value in the accumulator is

positive.

6.4.3.2.9 SNA

Skip if negative accumulator. Skips the next command if the value in the accumulator is

negative. Defined by 2's complement.

6.4.3.2.10 SZA

Skip if zero accumulator. Skips the next command if the value in the accumulator is zero.

6.4.3.2.11 SZE

Skip if zero end carry. Skips the next command if the end carry flag is set to zero.

6.4.3.2.12 HLT

Halt. Stops the program execution.

6.4.3.2.13 INP

Input. Moves one byte of data from an input device into the accumulator.

6.4.3.2.14 OUT

Output. Moves one byte of data (LSB) from the accumulator to an output device.

6.4.3.2.15 SKI

Skip if input. Skips the next command if the input flag indicates that data from an input

device was sent to the CPU.

6.4.3.2.16 SKO

Skip if output. Skips the next command if the output flag indicates that an output device is

ready to receive data.

6.4.3.2.17 ION

Interrupts on. Turns on the interrupts enable flag.

6.4.3.2.18 IOF

Interrupts off. Turns off the interrupts enable flag.

Mano CPU Emulator Generator

October 12, 2013

 63

6.5 Instruction Set Template Guide
The instruction set template is used to generate new instruction sets. The template was

created to bypass the need for users to write Java code whenever they wish to change the

instruction set. The use of the template enables full usability of the system for users

unfamiliar with Java on one hand, and prevents code exposure on the other.

Whenever an instruction set changes, the assembler needs to be changed as well. If the

assembler remained the same, new commands would not be assembled and edited or

removed commands would be assembled into wrong pseudo-binary representations,

causing unexpected results. To address this problem, the template file is divided into two

sections: Format and Code. The format section defines the way a command should be

represented in its pseudo-binary form. The code section defines the micro-code that

implements the instruction set. The order in which the sections appear in the template is not

important, but both sections must be written.

Like most programming and scripting languages, whitespaces are ignored.

6.5.1 Format Syntax

The format section is coded inside the format block. The format block is identified by the

keyword "format" followed by a block encased in curly brackets ({ }):

format{
 .
 .
 .
}

The first part of the format section describes the different existing access modes. The access

modes description is represented by the "access_modes" keyword, followed by a triangular

brackets (< >). Within the triangular brackets each access mode is defined by its name,

encased in square brackets, the equals sign and a string representing its value. Empty square

brackets represent the default state, where no access mode is used. Different access modes

are separated by commas.

format{
 access_modes < [I] = "1", [] = "0" >
 .
 .
 .
}

In this example, an access mode represented by the symbol "I" will be evaluated as "1", and

no access mode will be evaluated to "0".

The commands' format can be represented in two ways. Each format belongs to a command

type.

Mano CPU Emulator Generator

October 12, 2013

 64

6.5.1.1 Memory-Referencing Instructions

Memory-referencing instructions are commands that access the memory. These commands

use a label to declare the address accessed. An MRI command can be followed by an access

mode. In that case, the label's value will be used according to the declared access mode.

The assembly format is always the same: <COMMAND> <LABEL> [ACCESS_MODE].

The MRI command format lets us decide the order in which those fields will be joined to

create the pseudo-binary representation of the given instruction. The command will be

replaced by the operation code. The label and access mode will use special tags.

An operation code is represented by the keyword "opcode", the number of bits it occupies

in triangular brackets and its value in parentheses. A label is represented by one of these

tags: "<LABEL>", "<TAG>" or "<VAR>". The tags are interchangeable for the user's

convenience and have no syntactical difference. An access mode is represented by the

"<AM>" or "<A_MODE>" tags. These, too, are interchangeable.

format{
 .
 .
 LDA => <AM> opcode<3>(2) <LABEL>
 .
 .
}

This example shows how the LDA command is declared. The label and access mode assembly

syntax is always the same, so writing them next to the command name is redundant. This

line indicates that if the assembler encounters a command named LDA, it should put the

access mode as the first bit, then put the OpCode value 2, translated into a 3-bit binary

value, and then add the address of the label. If the program contains the line: LDA X I, and

the address of X is 011101001101, it will be translated to: 1010011101001101.

6.5.1.2 Non-Memory-Referencing Instructions

Non-memory-referencing instructions affect the system without accessing the memory, so

there is no need for a label or an access method, forcing the translation to always be the

same. To take advantage of this, non-MRI command can be defined using a direct translation

from the command name to its value. For easier usability, the translation is written using a

string with the hexadecimal value of the command.

format{
 .
 .
 CMA => "7200"
 .
 .
}

In this example we see how the CMA command is translated directly to 720016, which has

the binary value of 0111001000000000.

Mano CPU Emulator Generator

October 12, 2013

 65

6.5.2 Code Syntax

Like the format section, the code section is coded inside the code block. The code block is

identified by the keyword "code" followed by a block encased in curly brackets ({ }):

code{
 .
 .
 .
}

Each line in the code block defines a group of micro-operations done in a specific instruction

cycle, given a set of conditions are met. The conditions in each line should be mutually

exclusive, so no two groups are executed on the same cycle. Failing to do so is not defined

and may result in unexpected results, as the order in which the micro-operations are

executed is not deterministic. All the micro-operations within a given group are considered

to be executed in parallel. The order of the lines' positions is not important, as all the lines

should be mutually exclusive. If a line is identical for several assembly commands, it should

be written only once. The lines are not tied directly to any specific command. Grouping lines

belonging to a specific command can be done for convenience, but it has no bearing on the

resulting instruction set implementation.

Each line starts by declaring the instruction cycle and the conditions for it to be activated.

The instruction cycle is defined by an uppercase 'T' followed by a cycle number in the range

of 0-15. The conditions appear in parentheses. Several conditions may appear with logical

relations between them. A logical NOT can also be used. A condition can check if the

currently executed OpCode matches a specific value by writing the keyword "opcode"

followed by the numerical value in parentheses, check if a flag was set to '1' since the last

time it was checked by writing the flag's name followed by ".chn" or check if the value of a

component evaluates to "true" by writing that component's name. The value evaluates to

"false" if it is zero, or to "true" in any other case. An evaluation of a specific bit or a range of

bits can be done by adding the bit number or bits range (lower bit-higher bit) in square

brackets.

code{
 .
 .
 T4(opcode(2)) …
 T3(opcode(7) && !I && IR[5]) …
 T12(IEN && (FGI.chn || FGO.chn)) …
 .
 .
}

In this example, the first row is checked on instruction cycle number 4, and it checks if the

OpCode is equal to 2. The second row is checked on instruction cycle number 3, and it

checks if the OpCode is 7, the indirect flag is set to '0' and bit number 5 of the instruction

Mano CPU Emulator Generator

October 12, 2013

 66

register is set to '1'. The last row is checked on instruction cycle number 12, and it checks if

the IEN flag is set to '1' and one of the I/O flags was set to '1' since it was last checked.

The second part of the line defines the actions to be taken if the conditions are met. If more

than one action should be executed, the actions are separated by a coma. The two parts are

separated by a colon and the line should end with a semicolon. There are six different action

types:

6.5.2.1 System Commands

System commands are commands for the CPU. There are two system commands:

 end: Ends the execution of a command. Resets the instruction timer back to 0 for

the next command.

 hlt: Sets the CPU start flag to 0, thus terminating the program execution.

6.5.2.2 OpCode Assignment

This action decodes the bits representing the OpCode. It is done by writing the keyword

"opcode", an assignment sign ('='), the "translate to decimal" sign ('#') and the name of the

component holding the OpCode. A bit or a bits range can be added.

code{
 .
 .
 T2(!R): opcode = #IR[12-14] …
 .
 .
}

This row sets the OpCode to the decimal value of bits 12-14 of the instruction register if the

interrupt request flag is set to '0'.

6.5.2.3 Component Commands

These commands affect a specific component by writing its name followed by the desired

action. The four component commands are:

 .cmp: Reverses the value of a flag. Has no effect on a register.

 .set: Sets the value of a flag to '1'. Has no effect on a register.

 .clr: Sets the value of the component to zero.

 .inc: Increases the value of a register by one. Has no effect on a flag.

code{
 .
 .
 T3(opcode(7) && !I && IR[8]): E.cmp, end;
 T2(R): PC.inc, IEN.clr, R.clr, end;
 .
 .
}

Mano CPU Emulator Generator

October 12, 2013

 67

6.5.2.4 Move Commands

These commands move data from one component to another. This is done by applying the

"move" operator ("<-") on two components. The data will move from the right hand operand

to the left hand operand. The action can be performed on a single bit or a range of bits as

well. If fewer bits than a component's capacity are moved, the extra bits will be filled with

leading zeroes. If the component receiving the data has fewer bits than needed, the value

will be truncated, losing the amount of extra bits (starting at the MSb).

code{
 .
 .
 T2(!R): opcode = #IR[12-14], AR<-IR[0-11], I<-IR[15];
 T3(opcode(7) && I && IR[11]): AC[0-7] <- INPR …
 T4(opcode(2)): DR <- M;
 .
 .
}

Moving data from different components at the same time using the same bus might corrupt

the data and should be avoided. A warning will be issued whenever two or more move

commands appear in the same instruction cycle.

6.5.2.5 Conditional Actions

Some commands perform actions only if a condition is met. To implement commands such

as SZE or SPA, a conditional execution is needed. Adding a conditional execution of the

micro-operations, is possible using the "if" operation. The "if" operation includes a condition

clause and a commands block. The condition clause follows the same rules as the conditions

for the instruction cycle, and the commands block follow the same rules as the instruction

cycle actions. The commands block is encased in curly brackets ({ }).

code{
 .
 .
 T3(…): if(!E) { PC.inc }, end;
 T3(…): if(!AC[15] && AC[0-14]) { PC.inc }, end;
 .
 .
}

There is no "else" block. Such functionality can be achieved using an "if" operation with the

opposite condition or by using the "end" command within the commands block.

// If positive accumulator do nothing, else skip.
 T3(…): if(!AC[15] && AC[0-14]) { end };
 T4(…): PC.inc, end;

Mano CPU Emulator Generator

October 12, 2013

 68

6.5.2.6 ALU Commands

ALU commands are commands performed by the ALU. These commands use one or both

inputs of the ALU, perform an arithmetic or logic operation and store the result in the ALU's

output. If the command is given the names of components that are connected to the ALU

inputs, data is moved automatically from those components to the ALU. The result is a value

that can be used as a right hand operand of a "move" command. If not moved to the

accumulator or any other component, the result cannot be used, and it will be overwritten

when another ALU command is performed. Different ALU commands may differ in syntax,

depending on the number of operands used and the operation performed. The ALU

commands are encased in triangular brackets (< >) and the operation appears between two

back quotes ('`'). The first parameter of an ALU command is the ALU's ID followed by a colon.

6.5.2.6.1 Binary Commands

Binary commands use both operands. These commands appear after the ID. They are

composed of two IDs, declaring the operands, with an operation sign in between them.

code{
 .
 .
 T5(opcode(0)): AC <- <ALU:AC `&` DR>, end;
 T5(opcode(1)): AC <- <ALU:AC `+` DR>, end;
 .
 .
}

The first line in this code example performs a bitwise AND operation between the data

register and the accumulator, and moves the result to the accumulator. The second line

sums the values of the data register and the accumulator in the same way.

6.5.2.6.2 Unary Commands

Unary commands use only one operand. To specify which of the inputs should be used, the

second parameter is the input number (can be '0' or '1') followed by a colon as well. The

operation is declared as an operation sign followed by the component ID on which the

operation should be performed. While syntactically correct, naming a component that does

not match the declared input will result in undefined behavior, returning a wrong result.

code{
 .
 .
 T3(…): AC <- <ALU:1:`~`AC>, end;
 .
 .
}

This line performs a bitwise NOT on 'Input 1' after moving the data from the accumulator.

Mano CPU Emulator Generator

October 12, 2013

 69

6.5.2.6.3 Shift Commands

Shift commands are a special kind of unary commands. While they use one operand like any

other unary command, they require extra parameters. The syntax for the shift commands is

similar to that of binary commands with two main differences:

 Instead of a second operand, there is a number that defines the offset amount.

 Instead of an operation sign there is an operation expression that defines the side to

which the bits will be shifted and the value used to fill missing bits. The value

appears in parentheses and the whole expression is encased in back quotes.

code{
 .
 .
 T3(…): <ALU:1:AC `<<(0)` 1>, …
 .
 .
}

The line in the example uses data from the accumulator through 'Input 1'. It shifts all bits to

the left by an offset of 1, filling the missing bits with zeroes.

// Signed shift-right:
 T3(…): if(AC[15]) { <ALU:1:AC `>>(1)` 1>, end };
 T4(…): <ALU:1:AC `>>(0)` 1>, end;

The example above implements a signed shift-right (not part of Mano's instruction set). At

instruction cycle number 3, if the sign bit is '1', a shift-right is performed using '1' as the

filler, and the command is ended. If the sign bit is '0', cycle number 3 does nothing and cycle

number 4 performs a shift-right filling the missing bits with a '0'.

Mano CPU Emulator Generator

October 12, 2013

 70

6.6 User Control Panel
The user control panel is the graphic user interface that the user uses to monitor the

program during execution or to load programs and instruction sets.

Figure ‎6-2: User control panel

6.6.1 Memory Panel

The memory panel shows the content of the memory in real time.

6.6.2 Variables Panel

The variables panel shows all the labels with their memory address.

6.6.3 System State Panel

The system state panel shows the system state in real time.

Mano CPU Emulator Generator

October 12, 2013

 71

6.6.4 Command Panel

The command panel shows the command being executed.

6.6.5 Run Button

The "Run" button executes the program.

6.6.6 Step Button

The "Step" button executes the next command.

6.6.7 uCode Checkbox

When checked, the "Step" button executes each micro-operation instead of each assembly

command. The command panel changes accordingly.

6.6.8 Reset Button

The "Reset" button resets the system to its default values without unloading the program or

the instruction set.

6.6.9 Exit Button

The "Exit" button exits the system, closing all opened windows.

6.6.10 Load Program Button

The "Load Program" button opens the program editor.

6.6.11 Assemble Button

The "Assemble" button assembles the program and loads it to the system's memory. It

updates the variables panels and resets the system's state. If a syntax error is encountered,

the memory and variables remain as they were.

6.6.12 Default Template Button

The "Default Template" button loads the default instruction set and assembler instead of the

ones currently loaded.

6.6.13 Current Instruction Set Panel

The panel shows the name of the currently used instruction set.

6.6.14 New Template Button

The "New Template" button opens the instruction set template editor.

6.6.15 Compile Button

The "Compile" button compiles the last instruction set template loaded. After compilation, a

new instruction set implementation and assembler are generated. If an assembly command

was removed from the instruction set, and that command was used in the last program

loaded, trying to assemble the program will fail. If that command was previously assembled,

it will remain in the system's memory. That command will either do nothing, or perform a

different command if it fits its binary representation.

6.6.16 Instruction Set List

The instruction set list shows previously compiled instruction sets.

Mano CPU Emulator Generator

October 12, 2013

 72

6.6.17 Reload Template Button

The "Reload Template" button reloads an instruction set and assembler selected from the

instruction set list.

6.7 Program Editor
The program editor is used to load, save and edit programs.

Figure ‎6-3: Program editor

6.7.1 Program Panel

The program panel is used to edit the program.

6.7.2 Use Button

The "Use" button closes the editor. The program is not assembled automatically.

6.7.3 Load Button

The "Load" button opens a loading dialog that allows for saved programs to be loaded.

Mano CPU Emulator Generator

October 12, 2013

 73

6.7.4 Save Button

The "Save" button opens a saving dialog that allows the user to save programs.

6.7.5 Cancel Button

The "Cancel" button closes the editor without changing the program.

6.8 Instruction Set Template Editor
The instruction set template editor is used to load, save and edit instruction set templates.

Figure ‎6-4: Instruction set template editor

6.8.1 Template Name

The template name is used to identify the different instruction sets. Once compiled, the

name will be used to identify the files relevant for this instruction set. The name appears in

the instruction set list. When loading a template file, the file's name becomes the template

name.

6.8.2 Template Panel

The template panel is used to edit the template.

6.8.3 Use Button

The "Use" button closes the editor. The template is not compiled automatically.

Mano CPU Emulator Generator

October 12, 2013

 74

6.8.4 Load Button

The "Load" button opens a loading dialog that allows for saved templates to be loaded.

6.8.5 Save Button

The "Save" button opens a saving dialog that allows the user to save templates.

6.8.6 Cancel Button

The "Cancel" button closes the editor without changing the template.

6.9 Timeout Dialog
The timeout dialog appears if the program did not end within a specified amount of

executed commands.

Figure ‎6-5: Timeout dialog alert

6.9.1 Stop Button

The "Stop" button terminates the program without waiting for it to finish properly.

6.9.2 Cancel Button

The "Cancel" button closes the timeout dialog and resumes the program. This should be

used only if the programmer believes that the program should run for a long time by design.

Cancelling the dialog will reset the timeout counter, resulting in the timeout dialog showing

again once the timeout is reached for the second time. This dialog will keep popping until

the program finishes properly or terminated.

Mano CPU Emulator Generator

October 12, 2013

 75

7 Summary

7.1 Main Focal Points
The project revolves around three main focal points:

7.1.1 CPU Architecture and Functionality

The project's main objective is to give the students a better understanding of what

components compose a CPU and how those different components interact with one

another to create a functioning computer processor. This project allows the students to

experiment beyond the basic CPU boundaries by enabling them to change the interactions

between components and experience the results of those changes. On the other hand, the

system teaches the students the limitations of the architecture and how to consider them

carefully, as any change may upset the delicate balance within such a complex system.

7.1.2 Software-Hardware Modeling

To enable capabilities not present in existing systems, a more detailed modeling had to be

accomplished. Existing systems use predetermined procedures to perform previously-known

operations, rendering a fully modeled hardware unnecessary. Since this system is much

more open ended, allowing the user to create new scenarios at a lower level, the modeling

needs to remove some abstraction levels as well. Having registers as the lowest building

blocks, for example, is not enough when allowing the user to edit the system at the bit level.

7.1.3 Scalability

Several good ideas were conceived during the brainstorming sessions at the early stages of

the project's planning. Some of those ideas remained outside of the project's scope, but

there are real intensions to develop them in the future. To facilitate future development, the

system's infrastructure was carefully developed. While not fully used, some tools and

features were designed and integrated into the system for future utilization. An example for

such a tool is the data transfer map. With unchangeable architecture, the component

connectivity could have been hardcoded, but that would cripple the system if a changeable

architecture were to be implemented.

7.2 Conclusions

7.2.1 Good Planning is Key for Success

When developing the system, a considerable amount of time was used for the project's

planning stage. Even though some unforeseen problems did arise during code development,

most of the problems were solved during the planning phase, reducing the effort and time

used dramatically.

7.2.2 Good Tools can Make the Difference

While implementing the system without using Java CUP, IntelliJ IDEA, JUnit or Visio could be

done, the amount of effort would increase dramatically and the quality of the final result

would be considerably lower.

Mano CPU Emulator Generator

October 12, 2013

 76

7.3 Future Work

7.3.1 Multithreaded Implementation

As currently implemented, some functionality that should work using multiple threads in

parallel does not do so. An example of this would be the micro-operations execution.

Multiple micro-operations executed in the same instruction cycle should be performed in

parallel to better imitate the functionality of the hardware. Currently they are executed

sequentially.

7.3.2 Editable Architecture

One of the initial goals of the system was to enable editable architecture in addition to an

editable instruction set. That goal proved to be greater than the outcome possible within the

scope of this project and was postponed for future implementation. While this feature was

not implemented, it is mostly supported by the system's infrastructure. Most of the work in

the development of this feature will revolve around the implementation of a subsystem that

generates a new CPU architecture. Such a subsystem would be very similar to the instruction

set generator.

7.3.3 Move to the Cloud

The system currently runs locally on the user's machine. This is problematic for several

reasons:

 The system uses a file system that uses various files and directories, whose structure

must be carefully maintained.

 The system generates and compiles Java code, forcing the user's operation system

to support Java development.

 The system needs to be totally portable between different platforms.

The easiest solution to all those problems is to set up a server running the system with a

web based user interface. Each user could use login credentials to access his or her work.

7.3.4 Instruction Set Generation Tool

A graphic tool that can be used to generate instruction sets would be much more user

friendly than the currently used template based tool. Such a tool would prevent a significant

amount of syntax and logic errors made by users. It could also introduce some default

values, saving time in needless rewriting of common code.

Mano CPU Emulator Generator

October 12, 2013

 77

8 References

8.1 Research
 [92] Mano M. M., "Computer System Architecture 3rd Edition", Prentice Hall, 1992.

 [10] Dr. Hoffner Y., "Computer Structure & Programming", Shenkar College, 2010.

 [10] Dr. Hoffner Y., "Computer Architecture", Shenkar College, 2010.

 [11] Dr. Hoffner Y., "CPU Design", Shenkar College, 2011.

 [13] Dr. Hoffner Y., "Mano_v.20.2 Simulator", Shenkar College, 2013.

 [13] "Computer Architecture", Wikipedia, 2013.

 [13] "Mano Machine", Wikipedia, 2013.

 [13] "Hardware Description Language", Wikipedia, 2013.

 [13] "Verilog", Wikipedia, 2013.

 [13] "Register Transfer Level", Wikipedia, 2013.

 [13] "Register Transfer Language", Wikipedia, 2013.

 [13] Intel Corporation, CMPG Dept, 2011-2013.

8.2 Technical References
 [10] Dr. Shichman M., "Object Oriented Programming", Shenkar College, 2010.

 [11] Dr. Shichman M., "Object Oriented Design", Shenkar College, 2011.

 [11] Michael H., "Java Programming", Shenkar College, 2011.

 [12] Pessach G., "Compilation Theory ", Shenkar College, 2012.

 [12] Nudler Y., "Computer Network and Telecommunication", Shenkar College,

2012.

 [13] Stackoverflow.com, Stack Exchange, 2013.

 [13] Intel Corporation, CMPG Dept, 2011-2013.

http://en.wikipedia.org/wiki/Computer_architecture
http://en.wikipedia.org/wiki/Mano_machine
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Verilog
http://en.wikipedia.org/wiki/Register-transfer_level
http://en.wikipedia.org/wiki/Register_transfer_language
http://stackoverflow.com/

Mano CPU Emulator Generator

October 12, 2013

 78

9 Appendix A

9.1 Template for the Basic Mano Instruction Set
This template defines the instruction set as originally described by M. Morris Mano:

format {
// Access modes:
 access_modes < [I] = "1", [] = "0" >

// MRI format definitions:
 // AND: opcode = 0
 AND => <AM> opcode<3>(0) <VAR>
 // ADD: opcode = 1
 ADD => <AM> opcode<3>(1) <VAR>
 // LDA: opcode = 2
 LDA => <AM> opcode<3>(2) <VAR>
 // STA: opcode = 3
 STA => <AM> opcode<3>(3) <VAR>
 // BUN: opcode = 4
 BUN => <AM> opcode<3>(4) <LABEL>
 // BSA: opcode = 5
 BSA => <AM> opcode<3>(5) <LABEL>
 // ISZ: opcode = 6
 ISZ => <AM> opcode<3>(6) <VAR>

// Non-MRI format definitions:
 // CLA: opcode = 7, I = 0, Extended opcode bit = 11
 CLA => "7800"
 // CLE: opcode = 7, I = 0, Extended opcode bit = 10
 CLE => "7400"
 // CMA: opcode = 7, I = 0, Extended opcode bit = 9
 CMA => "7200"
 // CME: opcode = 7, I = 0, Extended opcode bit = 8
 CME => "7100"
 // CIR: opcode = 7, I = 0, Extended opcode bit = 7
 CIR => "7080"
 // CIL: opcode = 7, I = 0, Extended opcode bit = 6
 CIL => "7040"
 // INC: opcode = 7, I = 0, Extended opcode bit = 5
 INC => "7020"
 // SPA: opcode = 7, I = 0, Extended opcode bit = 4
 SPA => "7010"
 // SNA: opcode = 7, I = 0, Extended opcode bit = 3
 SNA => "7008"
 // SZA: opcode = 7, I = 0, Extended opcode bit = 2
 SZA => "7004"
 // SZE: opcode = 7, I = 0, Extended opcode bit = 1
 SZE => "7002"
 // HLT: opcode = 7, I = 0, Extended opcode bit = 0
 HLT => "7001"
 // INP: opcode = 7, I = 1, Extended opcode bit = 11
 INP => "F800"
 // OUT: opcode = 7, I = 1, Extended opcode bit = 10
 OUT => "F400"
 // SKI: opcode = 7, I = 1, Extended opcode bit = 9
 SKI => "F200"
 // SKO: opcode = 7, I = 1, Extended opcode bit = 8
 SKO => "F100"
 // ION: opcode = 7, I = 1, Extended opcode bit = 7
 ION => "F080"
 // IOF: opcode = 7, I = 1, Extended opcode bit = 6
 IOF => "F040"
}

Mano CPU Emulator Generator

October 12, 2013

 79

code {
// Interrupts handling:
 T0(R): AR.clr, TR <- PC;
 T1(R): M <- TR, PC.clr;
 T2(R): PC.inc, IEN.clr, R.clr, end;

 T3(IEN && (FGI.chn || FGO.chn)): R.set;
 T4(IEN && (FGI.chn || FGO.chn)): R.set;
 T5(IEN && (FGI.chn || FGO.chn)): R.set;
 T6(IEN && (FGI.chn || FGO.chn)): R.set;
 T7(IEN && (FGI.chn || FGO.chn)): R.set;
 T8(IEN && (FGI.chn || FGO.chn)): R.set;
 T9(IEN && (FGI.chn || FGO.chn)): R.set;
 T10(IEN && (FGI.chn || FGO.chn)): R.set;
 T11(IEN && (FGI.chn || FGO.chn)): R.set;
 T12(IEN && (FGI.chn || FGO.chn)): R.set;
 T13(IEN && (FGI.chn || FGO.chn)): R.set;
 T14(IEN && (FGI.chn || FGO.chn)): R.set;
 T15(IEN && (FGI.chn || FGO.chn)): R.set;

// Fetch & decode:
 T0(!R): AR <- PC;
 T1(!R): IR <- M, PC.inc;
 T2(!R): opcode = #IR[12-14], AR <- IR[0-11], I <- IR[15];
 T3(!(opcode(7)) && I): AR <- M;

// Memory-Reference code definitions:
 // AND: Bitwize AND
 T4(opcode(0)): DR <- M;
 T5(opcode(0)): AC <- <ALU:AC `&` DR>, end;
 // ADD: Sum
 T4(opcode(1)): DR <- M;
 T5(opcode(1)): AC <- <ALU:AC `+` DR>, end;
 // LDA: Load to AC
 T4(opcode(2)): DR <- M;
 T5(opcode(2)): AC <- DR, end;
 // STA: Store AC
 T4(opcode(3)): M <- AC, end;
 // BUN: Branch Unconditional
 T4(opcode(4)): PC <- AR, end;
 // BSA: Branch and Store Address
 T4(opcode(5)): M <- PC, AR.inc;
 T5(opcode(5)): PC <- AR, end;
 // ISZ: Increment and Skip if Zero
 T4(opcode(6)): DR <- M;
 T5(opcode(6)): DR.inc;
 T6(opcode(6)): M <- DR, if(!DR) { PC.inc }, end;

// Register-Reference code definitions:
 // CLA: Clear AC
 T3(opcode(7) && !I && IR[11]): AC.clr, end;
 // CLE: Clear E
 T3(opcode(7) && !I && IR[10]): E.clr, end;
 // CMA: Complement AC
 T3(opcode(7) && !I && IR[9]): AC <- <ALU:1:`~`AC>, end;
 // CME: Complement E
 T3(opcode(7) && !I && IR[8]): E.cmp, end;
 // CIR: Circulate Right
 T3(opcode(7) && !I && IR[7]): <ALU:1:AC`>>(0)`1>,AC[15]<-E,E<-AC[0],end;
 // CIL: Circulate Left
 T3(opcode(7) && !I && IR[6]): <ALU:1:AC`<<(0)`1>,AC[0]<-E,E<-AC[15],end;
 // INC: Increment
 T3(opcode(7) && !I && IR[5]): AC.inc, end;
 // SPA: Skip if Positive AC
 T3(opcode(7) && !I && IR[4]): if(!AC[15] && AC[0-14]) { PC.inc }, end;

Mano CPU Emulator Generator

October 12, 2013

 80

 // SNA: Skip if Negative AC
 T3(opcode(7) && !I && IR[3]): if(AC[15]) { PC.inc }, end;
 // SZA: Skip if Zero AC
 T3(opcode(7) && !I && IR[2]): if(!AC) { PC.inc }, end;
 // SZE: Skip if Zero E
 T3(opcode(7) && !I && IR[1]): if(!E) { PC.inc }, end;
 // HLT: Halt
 T3(opcode(7) && !I && IR[0]): hlt;

// Input-Output code definitions:
 // INP: Input
 T3(opcode(7) && I && IR[11]): AC[0-7] <- INPR, FGI.clr, end;
 // OUT: Output
 T3(opcode(7) && I && IR[10]): OUTR <- AC[0-7], FGO.clr, end;
 // SKI: Skip if FGI
 T3(opcode(7) && I && IR[9]): if(FGI) { PC.inc }, end;
 // SKO: Skip if FGO
 T3(opcode(7) && I && IR[8]): if(FGO) { PC.inc }, end;
 // ION: Interrupts On
 T3(opcode(7) && I && IR[7]): IEN.set, end;
 // IOF: Interrupts Off
 T3(opcode(7) && I && IR[6]): IEN.clr, end;
}

Mano CPU Emulator Generator

October 12, 2013

 81

10 Appendix B

10.1 Useful Links
These are links to some of the tools used during development:

10.1.1 Java CUP

http://www2.cs.tum.edu/projects/cup/

10.1.2 IntelliJ IDEA

http://www.jetbrains.com/idea/

10.1.3 Visio

http://office.microsoft.com/en-us/visio/

10.1.4 Sublime Text

http://www.sublimetext.com

10.1.5 WinMerge

http://winmerge.org

http://www2.cs.tum.edu/projects/cup/
http://www.jetbrains.com/idea/
http://office.microsoft.com/en-us/visio/
http://www.sublimetext.com/
http://winmerge.org/

