Software Requirements
Specification

For

Mano CPU Architecture
Emulator with Customable
Instruction Set

Version 2.1

Created by:
Yuval Tzur

Page ii

Page iii

Table of Contents
I 11 oo [0 Tod £ o] o 1SS PV RUR PRSPPI 1
1.1 PUIIOSE ittt E et nb e be b nrbe e nnres 1
1.2 Project Scope and ProdUCT FEAIUIEScceiieiiiiiiiiisie et 1
N O T g L I Tt ot o] 1 o] o SR 2
2.1 0T [0 T g T 0T [S SSSS 2
2.2 User Classes and CharaCteriStiCSoovuuiiririre ittt 2
2.3 OpPerating ENVIFONMENTcoiiiiii it 2
2.4 Design and Implementation CONSIIAINTS.ccoiiiiiiereieeese e 2
2.5 USEI DOCUMENTALIONiiteeiie ettt sttt ste et et e e e sbe s s e stesbeeneeseeesaeneesneeneeneeans 3
2.6 ASSUMPLIONS aNd DEPENUENCIESc.verieiieiieiiiiesie ettt sb e nn e 3
3. SYSIEM FRATUIES ...ttt 5
3.1 ASSEMDIE @ PTrOGIaM ...ttt ettt bbb 5
3.1.1 DesCription @nd PrIOTTLYoviiiirierieieieeeeee ettt 5
3.1.2 StIMUIUS/RESPONSE SEAUEICEScviverrerieseesieiisiestesteseessesesee st sse bbb s sr st se et sbe b nnen s 5
3.1.3 FUNCLIONAl REQUITEMENTS.cuiitiitiitiiieieieee ettt 5
3.2 o T T Lo W o (00 1 SRR 6
3.2.1 DesSCription @nd PrIOTTLYoviiiiiiiiieiieieeeee ettt 6
3.2.2 StIMUIUS/RESPONSE SEAUEINCEScververreriereeiieiestestesteseesseeeseesesse st sbesbe s s en et se e sb b b nn s 6
3.2.3 FUNCLIONAl REQUITEMENTS. ...ttt 6
3.3 Compile @ TEMPIALE FIlE ..oviieeecece e et s re et ees 7
3.3.1 DesCription @nd PrIOTILYccviiiiiiirieieieeeeee ettt 7
3.3.2 StIMUIUS/RESPONSE SEAUEICESc.ververrerieseeiieiistesiesteseesseseseesesse st st st s s s e e ese et sb b s nenes 7
3.3.3 FUNCLIONAl REQUITEMENTS. ...ttt 7
3.4 True Hardware EMUIALIONccoiiiiieieiee sttt 7
3.4.1 DesCription and PrIOMILYccveiiiie ittt s e et st re st et e s reeneestesreeseesre e 7
3.4.2 StIMUIUS/RESPONSE SEUUEINCEScveeveiriiteeiesteiteestesteestesteeseestesseessesteaseesresteessesteeseestesseessessens 7
3.4.3 FUNCLiONal REQUITEIMENTS.........eciiiii ittt sttt sre st et e s beereesbesreesresre e 7
4. External Interface REQUITEMENTScc.ccviiiiiiiiiic et 8
4.1 USEI INEEITACES ... e ettt sttt et e e s et ebeebeebeneenneeeneas 8
4.2 HArdWAre INTEITACES. vttt b ettt nne e 8
4.3 SOTIWAIE INEEITACES ... e veeveeee ettt e b e te s e steeteesbesreeaesteeneeneennen 8
4.4 ComMMUNICALIONS INEEITACES ... veviiiveciie sttt ettt ste e nreanes 8
5. Other Nonfunctional REQUITEMENTS..........cc.coiiiiiicie et 9
51 Performance REQUITEMENTS.cuiiiiieiii ettt 9
5.2 SafELY REQUITEIMENTS ...ttt n s 9
5.3 SECUNILY REQUITEIMENTS.eiiiiiiitiitiitete bbbttt 9
5.4 Software QUAlILY ATTDULES........ccviie ettt s te e sreeee 9
APPENAIX A DESIGN ..ttt bbbttt b bbb bbbt bt e e e I
1. CPU DaAta STFUCTUIE.......ciiiiiiieitieiet ettt ettt sb et e e e nbe e et e et e e e s e e nnneanbeesnee s |
1.1 (00 013 - U OUR TR RTRURRPN I
1.2 RV LRSS Il
O R © T V1< PR I
1.2.2 FHIOS . bbbt 1
I N |V 1= 1 o o LR I
1.3 COMPONENT ..ttt et bt bbbt s bbbt s bt et e e bt e he e nb e e b e e bt nbeeb e e nbeaneennenbe e v
IR T A © 1 T VT OSSPSR v
IR T T T [OSSR v
IR T N |V 1= 1 o o OSSPSR v
1.4 DataCOMPONENT ...ttt b e bt e b e st e e b bt e st e e be e sbe e sae e san e nbe e v
R R © YT VT OSSPSR v

S A |V 1= To o [T PPPPPPPRRRRR v

15 BUS e VI

R Y0 O)V =T VT TR VI
IR = 1< o [P TRR VI
TR T 1V 1= 1 T To SRR VI
1.6 B LCT 0 1) (T SRS Vil
IO T R @ 1V =T Y 1= VI
IO T =T o [VI
IO TR T 1Y, 1=1 1 4 To Lo [T VI
1.7 DALAREGISTET ...t VIl
O R O 1V -1 Y/ 1= TR VI
IO =T o [T VI
IO T Y, 1=1 1 4 To Lo [T VI
1.8 AGUIESSREGISTET ...ttt ettt b b nn e ren e VIl
IR T R O 1V -1 Y/ 1= TR VI
IR T =T o [T VI
IR R T Y, 1=1 1 4 To Lo [T VI
1.9 LORBGISTET ...ttt bbbt e VIl
IR IR R @ 1V LY/ 1=V TR TTRROTRTRI VI
IR I =T Lo [T TTRRTRTR VI
IO R T 1Y, 1=1 1 3 To Lo [T TURRTRTR VI
I O - U USSR IX
O O R O 1T VT SRR IX
0RO T2 =T Lo [T IX
IO O TR T 1Y, 1=1 1 3 To T [T IX
O R |V 1= 0 oo Y TSRS X
O T R O V=T VT TR X
000 =T Lo [T X
IO T Y, 1=1 1 3 To T [T X
IO N L SRR Xl
IO 1 R O VT Y/ 1= TR Xl
000 I 14 11 | USSR Xl
000 I T 11 1 o | USSR Xl
IO S = T o [T Xl
IO I ST 1Y, 1=1 1 4 To o [T Xl
000 T 12 1 o (T I 1<) RS X1V
00 0 R O VT Y/ 11T X1V
00 T2 =T o [T X1V
IO G T Y, 1=1 1 4 To Lo [T X1V
L1.14 PrOGIAMLINE ..ottt bbbt bbb bbbt b e e XV
IO R O 1V Y/ 1= TR XV
00 = T o [T XV
IO T Y, 1=1 1 4 To Lo [XV
N T o (0o | T o OO TP PR PRPR XV
O T A O 1V VT T TTRRR XV
IO ST =T o [T TR XV
O TR N 1Y =1 1 4T Lo TR XV
1.16 DataTranSTEIIMAPD.cc.eoeeieiie ettt ettt ettt st e st e sae e esaeere e besneeneesreeneeneas XVI
0 A O AV YT TSR XVI
IO IS T2 =T Lo [T TTRTTRTTRI XVI
R TR T 1Y 1=1 1 0T Lo RPN XVI
000 A 1153 o3 { [0 151 0 O o XVII
L0710 OVEIVIBW eveeee it e eeteee et e e e sttt e e e sttt e e s st et e e s sab et e e s st et e e s sabeeeessabeseessabaeeessabbeaessabbeeessatbeneeins XVII
IO = 1= Lo [T OTRTOTRTRRTTIN XVII
IO R T 1Y, 1=1 1 2 To Yo [T OTRTRRTTIN XVII

L1 SOl iRt XVII

L1181 OVEIVIEW .ttt ettt sttt e e e s e st te e s e sae st e e et ene e s e eneeseasententeneenneneas XVII
L.18.2 FHEIGS ..ottt ettt neere e renrenrene e XV
1.18.3 IMBENOGS ... ettt n et e ne e nnene e XVII
109 EMUIALOT .o et b bbbttt bbbttt XIX
I TR R @ VTV -SSR XIX
I T T [SRS RSRSRSPRN XIX
I TR T 1V 1= 1 g To o LSS SUSRSPRN XIX
2. COMPIIBES. ..ttt bbb bbbt b bbbt XX
2.1 TemPlate COMPIIETc.viiieece e e et re et e besreeeenre e XX
2.2 Format-Template COMPIIETcoviiie et sae s XX
N O =] VT PR RSPRSST XX
2.2.2 Format-Template ComMPIler GrammMarcoceieiieiriininese e XX
2.3 Micro-Code-Template COMPIIEEooviiiieie e XXI
2.3. 1 OVEIVIBW ..ttt bbbt b bbbttt b bt bbbt e e ne e e b e e XXI
2.3.2 System-Template Compiler Grammarcccceiiiiiiiie i XXI
24 A= .01 o] T PSSP XXI1I
2.4. 1 OVEIVIBW ...ttt ettt bttt b et b bt sttt et e st e bt et e e benbe et et e e XXI1I
2.4.2 ASSEMDBIET GIaMIMEToviieieieiieese sttt s et sbe bt nn e XXI1I
AppendiX B: SyStem AFCRITECTUNEccvoiiieiieee e |
1. SYSTEM COMPONENTS.....iiiiiiiiiii ettt b e bbb nre s |
L1 ALU (ALU) et b e bbbt b e bbbt sttt e st nenre s I
O O R |V 1= v I - SR I
I [o 11 £ F PP USSP P PRTPROT I
R R © 1 o1 < PO USSP PPRTPROT I
1.2 IMEMOTY (M) <ottt ettt b e st et e e ae e st e st e e st e s beeRe e besaeetesbeeseesbeatbesbesreeneenes I
O R |V 1= v I - SRR I
L1.2.2 INPULS ..t R R R R R R R Rt R R e n e re e nns I
0 B © 1 o1 PP TSP PTPRTPROT I
1.3 BUS (BUS) .ttt b e ettt bbb e 1
G T R |V 1= v U = L OSSOSO 1
IO 7 10 o 11U URTR |
IO T T O 11 1 | £ PSSR |
14 AAAress REGISTEN (AR)......eiueiiiieiteiei ettt ettt bbb Il
I R V1= v T = L RSSO 1
O 14 o 11U TRURTR |
O T O 11 1 1| £ P TSURRN |
1.5 Program COUNTET (PC) ..ottt ettt Il
I R 1V 1= v o - L WSSOSO i
IO 1 o 11 USSR Il
BT T O 11 1 o U £ ST SR Il
1.6 DAt REGISTEN ...ttt bbbttt Il
LT A |V 1= v I - OSSPSR Il
L1.6.2 INPULS ..ttt e b et bRt R Rt R et R R n e b n e nenne s Il
1.6.3 OULPULS ..ttt stttk bt b etk bbbt b e bt eh ek b ekt e Rt e bt b e e b bbb nre s 1l
1.7 F Aol o0 01U - o) () SR Il
O R |V 1= - I - OSSPSR Il
L.7.2 INPUES ettt bbbt bbbt h e b bR b bRt e bt bt b b n e nenne s 1l
L.7.3 OULPULS ..ttt et b bbbtk s bt b et s bt s bkt e st e bt eb e e b e bt eb e e b nre s 1l
1.8 INSErUCEION REGISTET (IR) ...ttt ettt eneenaenneas v
S T R |V 1= v I L - OSSPSR v
L.8.2 IMPULS ..ttt b bt bbb bbbt b bbb ne b nne s v
1.8.3 OULPULS ...ttt ettt ettt h e bbbt b e bt e bt st b e e e bt bt b bbb nre s v
1.9 Temporary RegiSter 0 (TRO) ...ocueeiiieiie ettt ettt seeeneeneenne s v

IO RO 1Y/ 1=1 7 o 1 = T PTTRRPRRRR v

L T 1 1] o111 £ O PP T SRR TUPP v
(R TR T TV 1110 \Y;
1.10 Temporary REGISIEr L (TRL) ..viiiiie ittt st sttt sre et te e sreene v
0 |V 1= = - L - OSSPSR v
IO [o 11 £ TPV PR T PSRN v
L.10.3 OULPULS ..ttt ettt b e bbbt e s bt e bt she e s bt e sh b e e mb e e beeeb e e eb e e eb b e eabeenbeenbe e e v
111 INPUt REGISIEr (INPR)....ecuiiiii ittt sttt te st e s beere e besneeaesteeeesteeneetens VvV
O R 1V 1= v o L WSSOSO \Y
00 5 I 1 o111 £ PSSP V
IR 5 R T O 111 o PSSP V
1.12 Output REGISLEr (OUTR) ...c.eiiiieieiicieiestes ettt Vv
I R 1V 1= v o = L WSSOSO \Y
IO 7 1 1 o111 PSR UT V
IO 2 T O 111 o PSSP V
113 ENG CAITY (B) 1ottt Vv
I TR R 1V 1= v o L WSSOSO \Y
1.14 INErruPt REQUESE (R) ...oviieiiieieieies bbb \YJ
O |V 1= v I L PSSP \YJ
115 CPU SEAIE (S) erveeveeeeeeeseeeeeeeeeeeseeeseeseesseeesees e es e eseeesese s ss e es e seesseee s es e eseseseeeseeeseeseeseeeseeeseenee Vv
0 R |V 1= v I - USSR \YJ
I T [0 T =Tt () USSR Vi
00 R |V 1= v - - OSSR VI
1.17 Interrupt ENADIE (IEN) ..ot sttt sae e pe e e ers Vi
R R 1V 1= v o = L WO SRRSO PSPPI VI
118 INPUL FIAG (FGI) ittt bbb VI
TR 1V 1= v o - L WSSOSO PSPPI VI
119 OULPUL FIAG (FGO) w.rvvoevereeeeeeeeeeeeeseeesss s eeseee s s s en s snseees Vi
I TR R 1V 1= v o = L WSSOSO VI
N I =T 1 {1l 1Y, =T o SRR Vil
3. ALU COMMANGS. ...ttt ettt bbb et e et ee st st eereeneeneenee s VI
3.1 UNAry COMMANGScoiiiieiie ettt st te et st e e te et e s be e b e sbeaaeesaesbaesbesbeereesresaeesrenns Vil
3.2 BiNary COMMANGSccviiuiiieieceee ettt st e et e s be b et e be e saesbeenbesbeeraesbesneenre e Vil
4. CPU Architecture DIQIamcccooiiiiiieceeie et sre e VI
Revision History
Name Date Reason For Changes Version
Yuval Tzur 25/10/12 | First draft 1.0
Yuval Tzur 10/2/13 | Adapted design to actual implementation 2.0
Yuval Tzur 22/2/13 | Adapted architecture to actual implementation 2.1

Software Requirements Specification for Mano CPU Architecture Emulator Page 1

1. Introduction

1.1 Purpose

This SRS describes the software functional and nonfunctional requirements for release 1.0 of the
Mano CPU Architecture Emulator with a Customable Instruction Set. This document is intended to
be used by the project developer that will implement and verify the correct functioning of the
system. Unless otherwise noted, all requirements specified here are of high priority and committed
for release 1.0.

1.2 Project Scope and Product Features

The Mano CPU Emulator will be a learning tool that will allow students to emulate the execution of
programs written in assembly code under the Mano CPU architecture the same way the currently
used emulator enables. In addition, the new emulator will introduce a compiler that creates new
instruction sets when provided an instruction set specification file.

Software Requirements Specification for Mano CPU Architecture Emulator Page 2

2. Overall Description

2.1 Product Perspective

The Mano CPU Emulator will introduce new features that add capabilities not covered by the
currently used emulator. The ability to create new instruction sets as well as writing and executing
assembly code that uses the new commands will help students with more advanced courses that
currently have no interactive learning tools. When fully implemented, the emulator will help teach
the thought process needed when creating an instruction set, and the importance of key elements
such as micro-code timing and order, correct command layout and user (Programmer) usability.

2.2 User Classes and Characteristics

The Mano CPU Emulator will have three main user classes:

Professor The course professor will provide the students with the emulator, as well as an
instruction set. The professor can create several interchangeable instruction sets,
each with a different purpose (Basic instruction set, advanced instruction set,
SISC instruction set, and more).

Programmer The programmer is a student that uses the emulator to write and execute
programs written in assembly code. The emulator interface will allow the
programmer to follow the program execution by showing the state of the CPU
elements, the memory content and the system state in real time, on a micro-
instruction by micro-instruction basis.

Instruction Set The instruction set writer is a more advanced student that understands the inner

Writer workings of the CPU architecture. The instruction set writer will create an
instruction set specification file that defines all the instructions, their op-code and
the set of micro-instructions executed by each instruction. The micro-instructions
will be defined by a set of limited actions applicable to the different elements in
the CPU. By extent, the instruction set will also define the instruction format.

2.3 Operating Environment

The Mano CPU Emulator will work in three main environments:

Professor's PC The professor will have a copy of the emulator on his personal computer. The
professor will use his copy to prepare for his lectures as well as executing home
assignments for grading purposes.

Student's PC The students will receive a copy each. Students will use the emulator to aid them
with the home assignments. The emulator will also be used for the end of
semester project.

Classroom The emulator will be available in some of the classrooms. Using the classroom
copies will allow the students to execute programs during class and ask for the
professor's help in real time.

2.4 Design and Implementation Constraints

HW-SW The emulator is implemented in software, but it emulates hardware components.

Compatibility ~ While software is more versatile and more structured, it should enforce some of
the hardware constraints. This impacts the way data is transferred between the
different components of the CPU, the range of supported micro-operations,
synchronous and asynchronous signal handling, etc.

Software Requirements Specification for Mano CPU Architecture Emulator Page 3

Specification
File Template

Mano
Emulator
Compatibility

Mano
Architecture
Compatibility

Easily
Exchangeable
Source Files

Conventional
Platforms

The emulator requires a compiler that converts specification files into Java code.
The specification file template should be clearly and carefully defined to allow
maximum usability while adhering to the strict limitations of hardware
component capabilities.

The emulator should be able to fully implement the original Mano instruction set.
There should be full backwards compatibility with all programs written using the
currently used emulator. All programs should be executed exactly as they would
in the current emulator version as far as the programmer is concerned.

The emulator should run under the Mano architecture. No components can be
added or removed, and all connectivity between components must be preserved.
Adding or removing any component, as well as altering the order in which the
components are connected to one another will change the functionality of the
emulated CPU.

Each instruction set is converted into Java code that uses a special API created
for the CPU. Whenever a new instruction set is introduced, a new Java source
file is created. A system that replaces the source file and updates the executable
file seamlessly is a must.

While the emulator will use some extended tools such as Java Cup (A
LEX/YACC tool for Java), the final executable must use standard packages and
libraries only. Although the professor has direct control over his personal
computer and can request for special installation in the classrooms, the students
should not be expected to install third party applications and cannot be bound to
a specific OS.

2.5 User Documentation

Programmer
Interface

CPU API
Specification
File Template

Original Mano
Instruction Set

The emulator will have a complete and detailed help document that fully explains
the programmer interface. The help document will cover register and flag
content, memory content, system output screen, system on-screen keyboard, the
micro-operation box and the built-in editor.

A CPU API document will list the different components and the usability of each
component (Purpose and functionality).

A document will be provided that describes the specification file template for
new instruction sets. The document will describe the operations available for
each component type and the correct syntax for that operation, as well as global
instruction definitions.

The original Mano instruction set will be the system's default, and a guide will be
provided so new programmers will be able to start writing assembly programs
without a full understanding of instruction set customization.

2.6 Assumptions and Dependencies

JVM

Assembly
Knowledge

Mano CPU
Knowledge

The emulator will be written in Java and the assumption is that anyone using it
will have an up-to-date JVM installed.

It is assumed that anyone using the emulator is familiar with assembly language.
The emulator is used to write and execute assembly programs, but it can't be used
as the main source for assembly language learning.

It is assumed that whoever uses the Mano CPU emulator is familiar with the
Mano architecture. No highly detailed document about the architecture itself will
be provided.

Software Requirements Specification for Mano CPU Architecture Emulator Page 4

Program Scale It's assumed that as a learning tool, no big scale programs will run on the
emulator. The purpose of the emulator is to allow the programmer to observe the
actions and operations made by the CPU, not to emulate full-scale programs. The
overhead might be too high to run big chunks of code.

Boolean As any "real" CPU, this emulator performs its operations on a bit-wise basis. It is
Arithmetic assumed that any programmer or instruction set writer is comfortable with
Knowledge Boolean arithmetic and bit-wise operations such as bit-wise AND, bit-wise OR,

complement, etc.

Software Requirements Specification for Mano CPU Architecture Emulator Page 5

3. System Features

3.1 Assemble a Program
3.1.1 Description and Priority

Once an assembly program is loaded, the emulator should assemble it into machine code. The
emulator will use the user defined instruction set and instruction structure to parse the program
given in the editor, assemble it, and store the resulting machine code in the emulated machine's
memory.

Priority: High.

3.1.2 Stimulus/Response Sequences

Stimulus: A programmer selects to assemble a given program.

Response: The emulator assembles the code and stores it in the emulated machine's memory.

Stimulus: A programmer wishes to edit a program.

Response: The editor will open and allow the assembly code to be edited.

Stimulus: A programmer wishes to delete a program.

Response: The emulated machine's memory will be cleared and the editor will show no
assembly.

3.1.3 Functional Requirements

Editor — Open Anyone using the emulator as a programmer can open the editor and
read/write/edit/delete its content.

Editor — Cancel If needed, the editor can be closed without saving any changes made to
the content.

Assembler — Once the programmer is finished, he or she can assemble the contents of
Assemble theeditor.
Assembler — The assembler uses the two pass assembly method. During the first pass,
Build Labels the assembler will create a table that holds all labels used by the
Table program. A label can be used as a variable name, a subroutine name or a

marker for a JMP statement. The table will hold the name and memory
address for each label.

Assembler — Fail The assembler will fail if the assembly code does not follow the
instruction set syntax, a tag appears more than once or if a nonexistent
command is used.

Assemble — Pass The assembler will pass and assemble the program if it was correctly

written.
‘Assembler — When assembly fails, the assembler will produce an error message to
Error Message notify the user.
Memory - Init Once the code has been assembled, the assembler will initialize the

Memory CPU's memory with the assembled code.

Software Requirements Specification for Mano CPU Architecture Emulator Page 6

3.2 Execute a Program

3.2.1 Description and Priority

Once a program has been assembled and loaded to the memory, the emulator allows the
programmer to emulate a full program execution. During the execution, the emulator will calculate

the CPU's state on a micro-operation basis, and will update the programmer’s interface accordingly.
Priority: High.

3.2.2 Stimulus/Response Sequences

Stimulus: A programmer presses the "Start" button.

Response: The emulator will start executing the program.

Stimulus: A programmer changes execution speed.

Response: The emulator increases delay between micro-operations execution.

Stimulus: A programmer presses the "Step" button.

Response: The emulator will execute one micro-operation and then will stop until further

instructions from the programmer.

3.2.3 Functional Requirements

Emulator — Start | The emulator will start execution of micro-operations in a loop, and will
continue until reaching the micro-operation that indicates the execution

termination.

Pause

Emulator — Set
Execution Speed

The emulator will execute one micro-operation and will update the
CPU's state.

The emulator will finish executing the micro-operation that is being
executed and will not proceed to the next micro-operation until further

The emulator will change the inter-operation delay value according to
the selected execution speed. The higher the delay, the slower is the
execution.

CPU — Execute

The CPU will execute one micro-operation and change its state

CPU - Stop Once a micro-operation sets the "Stop" flag to true, the CPU will no
__________________________ longer execute any operations until the emulator resets.
CPU — Reset Resets all the CPU's elements to their default values.

Interface — | When the emulator completes the execution of a micro-operation, the

Update State

programmer's interface will be updated with the new CPU state.

Software Requirements Specification for Mano CPU Architecture Emulator Page 7

3.3 Compile a Template File
3.3.1 Description and Priority

When given a template file, the system will compile it into two source files:
e A source file that implements the instruction set emulation on the CPU, which will be
compiled later on with the CPU source file to create the emulator.

e A source file that implements an assembler to be used by the emulator, which matches the
new instruction set.
Priority: High.

3.3.2 Stimulus/Response Sequences

Stimulus: An instruction set writer presses the "Create" button.
Response: The system will compile the assembler, the instruction set and the emulator.

3.3.3 Functional Requirements

Compiler — | One of the compiler's is the source code that implements the instruction

Compile set's operations. The new code will implement each operation by a set of

Instruction Set | micro-operations. The new code will be arranged by time cycles.
Compiler — | In addition to the instruction set's source code, an assembler source code

Compile will be generated. The new code will define the hexadecimal values of

Assembler the different assembly instructions and elements.

3.4 True Hardware Emulation
3.4.1 Description and Priority

When executing a program, the emulator will emulate a true hardware behavior. If a template file
defines an instruction that sets the value of a register from different sources at the same time or
more than one register sends data through the same bus at the same time, the emulator will use the
data from one of the sources randomly as if a real decoder was used by the hardware to select a
source.

Priority: Low.

3.4.2 Stimulus/Response Sequences

Stimulus: A register is set with two different values at the same time.
Response: Only one value will be set, ignoring the other value.

3.4.3 Functional Requirements

Emulator — True | Each value transmission will be declared separately. If more than one
Hardware Setter | transmission is made to the same component, one of them will override
the rest and will be the only value to be set.

Software Requirements Specification for Mano CPU Architecture Emulator Page 8

4. External Interface Requirements

4.1 User Interfaces

Assembler Editor: The assembler editor will allow the user to edit assembly programs. The
editor will have the following options:

Load — Loads a text file containing an assembly program.

Save — Saves an assembly program into a file.

Assemble — Assembles the assembly program.

Cancel — Closes the editor ignoring all changes.

Edit — The editor allows the programmer to edit the program's

content.

Programmer Ul: The programmer Ul will visualize the CPU state and the memory at any
given time. The basic Ul will show only relevant registers, the current
instruction and the memory state. The advanced Ul will also include the
current micro-operation and the remaining registers. The Ul will also include
the following options:

Edit Program — Opens the Assembler Editor.

Start — Starts program execution.

Stop — Resets program execution.

Pause/Run — Toggles program execution between paused and running.

Speed Select — Changes the delay time between executed instructions.

Instruction Editor: ~ The instruction editor allows the instruction set writer to edit the instruction
set. The editor will have the following options:

e Load - Loads a text file containing an instruction set template.

Save — Saves an instruction set template into a file.

Compile — Compiles the instruction set template.

Cancel — Closes the editor ignoring all changes.

Edit — The editor allows the instruction set writer to edit the

instruction set's content.

4.2 Hardware Interfaces
No hardware interfaces needed.

4.3 Software Interfaces

CPU API: The CPU API defines the operations the emulator can execute on the emulated CPU.
The API will be used by the compiler, which will compile an instruction set template
into a set of API calls.

4.4 Communications Interfaces

No communication interfaces needed.

Software Requirements Specification for Mano CPU Architecture Emulator Page 9

5. Other Nonfunctional Requirements

5.1 Performance Requirements

No critical performance requirements.

5.2 Safety Requirements
No safety requirements.

5.3 Security Requirements
No security requirements.

5.4 Software Quality Attributes

e The emulator must be compatible with the basic Mano CPU architecture and instruction set.
e The compiled assembler and instruction set must implement the exact same instruction set as
defined by the instruction set template.

Appendix A: Design

1. CPU Data Structure

1.1 Constants

TYPE NAME VALUE Comments

Boolean | 0 false 0 doesn't represent false in Java by default
Boolean | 1 true 1 doesn't represent true in Java by default
Integer | DATA_REGISTER_SIZE 16 16 bit data

Integer | ADDR_REGISTER_SIZE 12 12 bit address

Integer | 10_REGISTER_SIZE 8 8 bit characters

Integer | MEMORY _SIZE 2ADDRREGISTER_SIZE | Memory size defined by the max address value
Integer | BUS SIZE DATA_REGISTER_SIZE | Bus size is equal to the size of the data
Integer | DATA COMPONENTS 22 Number of components

Integer | DATA TABLE SIZE 15 Number of components that hold data
Integer | TIMER_LIMIT 16 Number of max cycles per instruction
Integer | ALU 0

Integer | ALU_INO 1

Integer | ALU_IN1 2

Integer | ALU_OUT 3

Integer | M 4

Integer | BUS 5

Integer | AR 6

Integer | PC 7

Integer | DR 8

Integer | AC 9

Integer | IR 10

Integer | TR 11

Integer | TRO TR TRO is TR for backward compatibility
Integer | TR1 12

Integer | INPR 13

Integer | OUTR 14

Integer | E 15

Integer | R 16

Integer | S 17

Integer | | 18

Integer | IEN 19

Integer | FGI 20

Integer | FGO 21

Integer | TIMER 22

Integer | UNREACHABLE -99 Data transfer to target component is impossible
Integer | TARGET_REACHED -1 Data transfer completed

Appendix A: Design Page 11

1.2 Value
1.2.1 Overview

This class defines a binary value. To do so, the class uses a Boolean array that represents a set of
Boolean digits. A value can be represented as a decimal value (Integer), a binary value (Boolean
array or String) or an hexadecimal value (String).

1.2.2 Fields

e size:int
e _content : boolean[]

1.2.3 Methods

e Value(size : int)
Constructor. Defines the number of bits.
o Value(boolean[] value)
Constructor. Sets a value from a Boolean array.
o Value(size : int, value : int)
Constructor. Sets number of bits and the value from an integer.
e Value(value : String)
Constructor. Sets the value from a hexadecimal value.
e set content(boolean[] value) : void
Sets a value from a Boolean array.
e set content(value : int) : void
Sets number of bits and the value from an integer.
e set_content(value : String) : void
Sets the value from a hexadecimal value.
e set content(value : Value) : void
Copies the content of another Value.
o get size():int
Gets the number of bits.
e boolean[] get_content()
Gets the content as a binary value.
e get decimal() : int
Gets the content as a decimal value.
e get _hexadecimal() : String
Gets the content as a hexadecimal value.
e boolean[] toBinary(size : int, value : int)
Transforms a decimal value to a binary value.
e boolean[] toBinary(value : String)
Transforms a hexadecimal value to a binary value.
e toDecimal(boolean[] value) : int
Transforms a binary value to a decimal value.
e toDecimal(value : String) : int
Transforms a hexadecimal value to a decimal value.
e toHexadecimal(boolean[] value) : String
Transforms a binary value to a hexadecimal value.
e toHexadecimal(size : int, value : int) : String
Transforms a decimal value to a hexadecimal value.

Appendix A: Design Page 111

e toHexadecimal(value : String) : String

Transforms a binary string to a hexadecimal string.
e toString() : String

Gets the binary value as a string.

Appendix A: Design Page IV

1.3 Component
1.3.1 Overview

This class defines a hardware component. Each class that emulates a hardware component will
inherit from this class.
Abstract.

1.3.2 Fields

o _id:int
e _name :string

1.3.3 Methods

e setld(id : int) : void
Sets the component's ID.
¢ setName(name : string) : void
Sets the component's name.
e getld() :int
Gets the component's ID.
e getName() : string
Gets the component's hame.

1.4 DataComponent
1.4.1 Overview

This class acts as an interface to all the components that can hold data. The common interface is
needed to allow a components array to be used in the System class. The array holds all the data-
holding components in the CPU and allows interaction with those components by using those
component IDs as the array indices. This interface will be implemented in all data-holding
components, but some of them will have no effect.

Interface.

1.4.2 Methods

get_input0() : DataComponent
get_inputl() : DataComponent
get_output() : DataComponent
evaluateAsBoolean() : boolean
evaluateAsBoolean(bitindex : int) : boolean
evaluateAsBoolean(bitStart : int, bitEnd : int) : boolean
isWritable() : boolean

isWritableO() : boolean

isWritablel() : boolean

changed() : boolean

get_value() : Value

get_value(index : int) : Value

get value(start : int, end : int) : Value
get_row(address : int) : Value
set_value(value : Value) : void

Appendix A: Design Page V

set_value(index : int, value : Value) : void
set_value(start : int, end : int, value : Value) : void
enableWrite() : void

enableWrite0() : void

enableWritel() : void

disableWrite() : void

disableWriteO() : void

disableWritel() : void

update() : void

clear() : void

increment() : void

set() : void

passThroughO() : void

passThroughl() : void

sum() : void

subtract() : void

multiply() : void

divide() : void

modulo() : void

and() : void

or() : void

xor() : void

equal() : void

notEqual() : void

greaterThan() : void

lessThan() : void

greaterOrEqual() : void

lessOrEqual() : void

complement() : void

complementO() : void

complementl() : void

shiftLeftO(numOfBits : int, filler : boolean) : void
shiftLeft1(numOfBits : int, filler : boolean) : void
shiftRightO(numOfBits : int, filler : boolean) : void
shiftRight1(numOfBits : int, filler : boolean) : void
get_decimal() : int

get_decimal(bitindex : int) : int
get_decimal(bitStart : int, bitEnd : int) : int

Appendix A: Design Page VI

1.5 Bus
1.5.1 Overview

This class defines a bus. Most of the components will be connected to one another through a bus.
The bus size is defined by the data register size.
Inherits from Component, implements DataComponent.

1.5.2 Fields
e value: Value
1.5.3 Methods

e Bus(id : int, name : String)
Constructor.
o set value(value : Value) : void
Moves data to the bus.
e get value() : Value
Gets the value currently in the bus.
e get row(address : int) : Value
Gets the value currently in the bus. Address is ignored.
e get value(start : int, end : int) : Value
Gets the value currently in the bus by a given range.
e get value(index : int) : Value
Gets the value of a bit currently in the bus.
e evaluateAsBoolean() : boolean
Evaluates if the bus' value is 0 or not.
¢ evaluateAsBoolean(bitIndex : int) : boolean
Evaluates if the value of a bit in the bus.
e evaluateAsBoolean(bitStart : int, bitEnd : int) : boolean
Evaluates if the range's value is 0 or not.
e get decimal() : int
Gets the decimal value of the bus.
e get _decimal(bitindex : int) : int
Gets the decimal value of a bit in the bus.
e get _decimal(bitStart : int, bitEnd : int) : int
Gets the decimal value of a range in the bus.

Appendix A: Design Page VII

1.6 Register
1.6.1 Overview

This interface defines the Register interface. A register can hold data, memory addresses or 1/O
data. A class will be defined for each of these registers types, using this interface.
Abstract, inherits from Component, implements DataComponent.

1.6.2 Fields

e value: Value
e buffer: Value
e writeEnable : boolean

1.6.3 Methods

o set value(value : Value) : void
Sets the register value.
e get value() : Value
Gets the register value.
e evaluateAsBoolean() : boolean
Evaluates if the registers' value is 0 or not.
o evaluateAsBoolean(bitIndex : int) : boolean
Evaluates if the bits' value is 0 or not.
o evaluateAsBoolean(bitStart : int, bitEnd : int) : boolean
Evaluates if the ranges' value is 0 or not.
e get decimal() : int
Gets the decimal value of the register.
e get _decimal(bitindex : int) : int
Gets the decimal value of the bit.
e get _decimal(bitStart : int, bitEnd : int) : int
Gets the decimal value of the range.
e enableWrite() : void
Enables writing.
e disableWrite() : void
Disables writing.
e isWritable() : boolean
Checks if writing is enabled.
e clear() : void
Sets the register's value to 0.
e increment() : void
Increases the register's value by 1.
e update() : void
Updates the register's value to the value in the buffer.
e set value(index : int, value : Value) : void
Sets the value of a bit in the register.
e get value(index : int) : Value
Gets the value of a bit in the register.
e set value(start : int, end : int, value : Value) : void
Sets the value of a range in the register.
e get value(start : int, end : int) : Value
Gets the value of a range in the register.

Appendix A: Design Page VIII

1.7 DataRegister
1.7.1 Overview

This class defines registers for data. Data can be an instruction or a value.
Inherits from Register.

1.7.2 Fields

Defined by Register.
1.7.3 Methods
Defined by Register.

o DataRegister(id : int, name : String)
Constructor. Sets the value and buffer lengths to DATA_REGISTER_SIZE

1.8 AddressRegister
1.8.1 Overview

This class defines registers for memory addresses.
Inherits from Register.

1.8.2 Fields
Defined by Register.
1.8.3 Methods
Defined by Register.

e AddressRegister(id : int, name : String)
Constructor. Sets the value and buffer lengths to ADDR_REGISTER_SIZE

1.9 IORegister
1.9.1 Overview

This class defines registers for input and output data.
Inherits from Register.

1.9.2 Fields

Defined by Register.
1.9.3 Methods
Defined by Register.

e |ORegister(id : int, name : String)
Constructor. Sets the value and buffer lengths to I0_REGISTER_SIZE

Appendix A: Design Page IX

1.10 Flag
1.10.1 Overview

This class defines a flag. A flag will contain a 1-bit value of TRUE or FALSE. To allow a flag to be
used for interrupts, it will also have a field that notifies if the value was set to TRUE since the last
time it was checked.

Inherits from Component, implements DataComponent.

1.10.2 Fields

e value : boolean
e Dbuffer: boolean
e _changed : boolean

1.10.3 Methods

e Flag(id : int, name : String)
Constructor.
o set value(value : Value) : void
Sets the flag to to bit 0 of the value. Raises the 'changed flag'.
e get value() : Value
Gets the flag's value. Clears the 'changed flag'.
e evaluateAsBoolean() : boolean
Evaluates if the flag value is true or false.
e get decimal() : int
Gets the decimal value of the flag (True = 1 and false = 0).
o set() : void
Sets the flag to true. Raises the ‘changed flag'.
e clear() : void
Sets the flag to false. Clears the 'changed flag'.
e complement() : void
Reverses the flag's value.
e changed() : boolean
Checks if the ‘changed flag' is raised.
e update() : void
Updates the flag's value to the value in the buffer.

Appendix A: Design Page X

1.11 Memory
1.11.1 Overview

This class defines the system's memory. The memory is composed by Registers and holds all the
instructions and varlable or constant values the program needs to be executed. The memory size is
defined as 2PPR-REC-SIZ

Inherits from Component implements DataComponent.

1.11.2 Fields
e _memory : ValuelMEMORY_SIZE]
e _buffer : Value[MEMORY_SIZE]
e _address : AddressRegister
e _writeEnable : boolean

1.11.3 Methods

e Memory(id : int, name : String, addressRegister : AddressRegister)
Constructor. Sets a pointer to an address register that serves as the memory's index.
o set value(value : Value) : void
Sets the value of the memory slot indicated by the current value of the address register.
e get value() : Value
Gets the value of the memory slot indicated by the current value of the address register.
e get row(address : int) : Value
Gets the value of the memory slot indicated by the given value of the address register.
e get value(start : int, end : int) : Value
Gets the value of a range in the memory slot indicated by the current value of the address register.
e get value(index : int) : Value
Gets the value of a bit in the memory slot indicated by the current value of the address register.
e get decimal() : int
Gets the decimal value of the memory slot indicated by the current value of the address register.
e get _decimal(bitindex : int) : int
Gets the decimal value of a bit in the memory slot indicated by the current value of the address register.
e get _decimal(bitStart : int, bitEnd : int) : int
Gets the decimal value of a range in the memory slot indicated by the current value of the address register.
o evaluateAsBoolean() : boolean
Evaluates if the value of the memory slot indicated by the current value of the address register is 0.
o evaluateAsBoolean(bitindex : int) : boolean
Evaluates if the value of a bit in the memory slot indicated by the current value of the address register is 0.
o evaluateAsBoolean(bitStart : int, bitEnd : int) : boolean
Evaluates if the value of a range in the memory slot indicated by the current value of the address register is 0.
e enableWrite() : void
Enables writing.
e disableWrite() : void
Disables writing.
e isWritable() : boolean
Checks if writing is enabled.
e update() : void
Updates the memory's value to the value in the buffer.

Appendix A: Design Page XI

1.12 ALU
1.12.1 Overview

This class defines the ALU. The ALU will perform all the calculations and operations needed for
the program to be executed. The ALU has two inputs for up to two operands needed for the
operations. The outcome will be saved as the output.

Inherits from Component, implements DataComponent.

1.12.2 Input

This is an inner class that defines an input value to the ALU. It implements the same methods as a
register, but it has no buffer and no master-slave functionality. Its size is the same as a data register.
Inherits from Component, implements DataComponent.

1.12.3 Output

This is an inner class that defines an output value of the ALU. It implements the same methods as a
register, but it has no buffer and no master-slave functionality. Its size is the same as a data register.
It is always writeable.

Inherits from Component, implements DataComponent.

1.12.4 Fields
e _inputO : Input
e _inputl: Input
e _output: Output
e _endCarry : Flag

1.12.5 Methods

e ALU(id : int, name : String, endCarry : Flag)
Constructor. Sets a pointer to a flag that holds the end carry of relevant operations.
e get value() : Value
Gets the value of the output.
e get _input0() : DataComponent
Gets a pointer to _input0.
get_inputl() : DataComponent
Gets a pointer to _input1.
get_output() : DataComponent
Gets a pointer to _output.
evaluateAsBoolean() : boolean
Evaluates if the value of the output is 0.
o evaluateAsBoolean(bitIndex : int) : boolean
Evaluates if the value of a bit in the output is 0.
e evaluateAsBoolean(bitStart : int, bitEnd : int) : boolean
Evaluates if the value of a range in the output is 0.
e get value(start : int, end : int) : Value
Gets the value of a range in the output.
e get value(index : int) : Value
Gets the value of a bit in the output.

Appendix A: Design Page XI1

e get _decimal() : int
Gets the decimal value of a range in the output.
e get _decimal(bitindex : int) : int
Gets the decimal value of a bit in the output.
e get _decimal(bitStart : int, bitEnd : int) : int
Gets the decimal value of a range in the output.
e enableWrite0() : void
Enables writing to _inputO.
e enableWritel() : void
Enables writing to _inputl.
o disableWrite0() : void
Disables writing to _input0.
o disableWritel() : void
Disables writing to _input1.
e isWritableO() : boolean
Checks if writing is enabled in _inputO.
e isWritablel() : boolean
Checks if writing is enabled in _inputl.
e passThroughO() : void
Moves the data from _inputO to the output.
e passThroughl() : void
Moves the data from _inputl to the output.
e sum() : void
Sums _input0 and _inputl. The result is put in _output. Updates _ endCarry if needed.
e subtract() : void
Subtracts _inputl from _inputO. The result is put in _output.
o multiply() : void
Multiplies _inputO by _inputl. The result is put in _output.
o divide() : void
Divides _input0 by _inputl. The result is put in _output.
e modulo() : void
Multiplies _inputO by _inputl. The remainder is put in _output.
e and() : void
Performs a bitwise AND between _inputO and _inputl. The result is put in _output.
e or():void
Performs a bitwise OR between _inputO and _inputl. The result is put in _output.
e xor() : void
Performs a bitwise XOR between _input0 and _inputl. The result is put in _output.
e complement0() : void
Performs a bitwise NOT on _input0. The result is put in _output.
e complementl() : void
Performs a bitwise NOT on _inputl. The result is put in _output.
e equal() : void
Checks if _input0 is equal to _inputl. The result (0 or 1) is put in _output.
e notEqual() : void
Checks if _input0 is not equal to _inputl. The result (0 or 1) is put in _output.
e greaterThan() : void
Checks if _inputO is greater than _inputl. The result (0 or 1) is put in _output.
e lessThan() : void
Checks if _input0 is less than _inputl. The result (0 or 1) is put in _output.
e greaterOrEqual() : void
Checks if _input0 is greater than or equal to _inputl. The result (0 or 1) is put in _output.
e lessOrEqual() : void
Checks if _input0 is less than or equal to _inputl. The result (0 or 1) is put in _output.

Appendix A: Design Page XIl11

o shiftLeftO(numOfBits : int, filler : boolean) : void
Shifts the bits in _input0 to the left by the given number of bits. Empty bits are filled according to the given
value. The result is put in _output.

o shiftLeftl(numOfBits : int, filler : boolean) : void
Shifts the bits in _inputl to the left by the given number of bits. Empty bits are filled according to the given
value. The result is put in _output.

¢ shiftRightO(numOfBits : int, filler : boolean) : void
Shifts the bits in _inputO to the right by the given number of bits. Empty bits are filled according to the given
value. The result is put in _output.

¢ shiftRight1(numOfBits : int, filler : boolean) : void
Shifts the bits in _inputl to the right by the given number of bits. Empty bits are filled according to the given
value. The result is put in _output.

Appendix A: Design Page X1V

1.13 InstructionTimer
1.13.1 Overview

This class defines the micro code timer that times the micro-instructions within each instruction.
Inherits from Component.

1.13.2 Fields

e _currentCycle : int
e reset: boolean

1.13.3 Methods

e InstructionTimer(id : int, name : String)
Constructor.
e get_currentCycle() : int
Gets the current cicle.
e pulse() : void
If the timer wasn't reset since the last cycle, goes to the next cycle. Goes to 0 after the number of cycles defined
by TIMER_LIMIT.
o reset() : void
Restarts the cycle count.

Appendix A: Design Page XV

1.14 ProgramLine

1.14.1 Overview

This class defines one line of a program. Each line consists of the line's address and the line's
content.

1.14.2 Fields

e address: Value
e _content: Value

1.14.3 Methods

e ProgramLine(address : Value, content : Value)
Constructor.

e get address() : Value
Gets the line's address.

e get_content() : Value
Gets the line's content.

1.15 Program
1.15.1 Overview
This class defines a program as a set of program lines to be loaded to the memory.
1.15.2 Fields
e _lines: List<ProgramLine>
1.15.3 Methods
e addLine(programLine : ProgramLine) : void
Adds a program line to the program.
e getLines() : ProgramLine[]
Gets an array containing all the program lines.

e clear() : void
Clears the program by deleting all lines.

Appendix A: Design Page XVI

1.16 DataTransferMap
1.16.1 Overview

The data transfer map is a table that defines the next step needed in order to transfer data from the
current component into a target component. Each row will define the current component, the
column will define the target component and their intersection will define the component to which
the data will be transferred in the next cycle. Rows' and columns' numbers are used as components'
IDs. Each entry will contain one of the following values: The next component ID,
UNREACHABLE (If the data can't be transferred to the target component) or
TARGET_REACHED (When a component intersects with itself, the current and target components
are the same, therefore the data has reached the target). Some component names are aliases for other
components. These components have several names with the same ID and occupy only one slot in
the transfer map (For example, TR and TRO are two names for the same register and have both the
same ID). On other occasions, one name can identify more than one target. In that case, the transfer
map entry intersections differ according to the location (For example, all rows marked as ALU refer
to the ALU's output, while columns marked as ALU refer to either input O or input 1, depending on
the source component being DR or AC/INPR).

1.16.2 Fields

o _map:int[][]
1.16.3 Methods

o DataTransferMap(String filename)
Constructor. Builds a transfer map from a configuration file.
e nextIinRoute(currlD : int, targeted : int) : int
Gets the source and target components and returns the components the data should be transferred to.

Appendix A: Design Page XVII

1.17 InstructionsUCode
1.17.1 Overview

This class defines the instruction set's micro operations. Each cycle has its own function. The
function defines the actions to be taken by the system according to the system's state. The Java file
implementing this class is generated by the compiler according to the template file. The current
Mano CPU architecture supports 16-cycle operations, but the number of cycle functions is not
limited and is defined by the instruction set writer.

Auto-Generated.

1.17.2 Fields

e CPU: System
e _cycleDescription : String

1.17.3 Methods

e InstructionsUCode(System CPU)
Constructor. Sets a pointer to the system used.

e t0: void

Defines actions to be taken by the system in cycle 0.
e tl1:void

Defines actions to be taken by the system in cycle 1.
e t2:void

Defines actions to be taken by the system in cycle 2.
e t3:void

Defines actions to be taken by the system in cycle 3.
e t4:void

Defines actions to be taken by the system in cycle 4.
e t5:void

Defines actions to be taken by the system in cycle 5.
e 16 : void

Defines actions to be taken by the system in cycle 6.
e t7:void

Defines actions to be taken by the system in cycle 7.
e t8:void

Defines actions to be taken by the system in cycle 8.
e 19:void

Defines actions to be taken by the system in cycle 9.
e t10: void

Defines actions to be taken by the system in cycle 10.
e tl11: void

Defines actions to be taken by the system in cycle 11.
e t12: void

Defines actions to be taken by the system in cycle 12.
e t13: void

Defines actions to be taken by the system in cycle 13.
e t14: void

Defines actions to be taken by the system in cycle 14.
e t15: void

Defines actions to be taken by the system in cycle 15.

Appendix A: Design Page XVI1II

1.18 System
1.18.1 Overview

This class defines the system. The system will act as the CPU. The system will contain all the
components and the connectivity between them. It will also provide the API used by the instruction
set. The system provides the CPU's state, and has no direct effect on the micro operations executed
in each cycle or their order.

1.18.2 Fields

constantTable : HashMap<String, Integer>
_instructionTimer : InstructionTimer
_componentsList : DataComponent([]
_transferMap : DataTransferMap
_opCode : int

e: Flag

r: Flag

s: Flag

i : Flag

ien : Flag

fgi : Flag

fgo : Flag

ar : AddressRegister

pc : AddressRegister

dr : DataRegister

ac : DataRegister

ir : DataRegister

tr0 : DataRegister

trl : DataRegister

inpr : IORegister

outr : IORegister

bus : Bus

memory : Memory

alu: ALU

1.18.3 Methods

e System()
Constructor.
e set opCode(opCode : int) : void
Sets the current Op-Code
o loadProgram(program : Program) : void
Loads a given program to the memory.
e resetTimer() : void
Resets the cycle timer.
e halt() : void
Ends the execution.
e checkOpCode(opCode : int) : boolean
Checks if a given Op-Code is the current Op-Code.
e nextCycle() : void
Moves the instruction timer to the next cycle.

Appendix A: Design Page XIX

e moveData(fromID : int, tolD : int) : void

Moves data from one component to another iteratively according to the transfer map.
e moveData(value : Value, tolD : int) : void

Sets the value of a certain component to the value given.

1.19 Emulator

1.19.1 Overview

This class acts as the emulator. It calls the cycle functions as long as the system is in execution
mode (The S flag is on). The emulator also provides data to the GUI.

1.19.2 Fields

e ManoCPU : System
e _uCode : InstructionsUCode
e _cycleDescription : String

1.19.3 Methods

e main(args : String[]) : void
Main function. Runs the emulation.
e getProgram() : Program
Loads a memory image that has been assembled from an assembly program.

Appendix A: Design Page XX

2. Compilers

2.1 Template Compiler

The Template compiler is used to compile the template file into a working instruction set. The
template file is composed of two parts, each with its own grammar: Format-Template Compiler and
Micro-Code-Template Compiler.

2.2 Format-Template Compiler
2.2.1 Overview

The Format-Template compiler will compile the assembler according to the instruction set template
file. The assembler needs to be compiled with every new instruction set, or else there would be no
compatibility between the instruction set format and the assembled code format.

2.2.2 Format-Template Compiler Grammar

format > "format" "{" access_modes command_format_list "}"

access_modes > "access_modes" "<" access_modes_list ">"

access_modes_list > access_modes_list "," access_mode | access_mode
access_mode > "[" ID "]" "=" STRINGVAL | "[" "]" = STRINGVAL
command_format_list > command_format_list command_format | command_format
command_format > ID "=>" element_listl | ID "=>" STRINGVAL

element_list > element_listl element | element

element ::="opcode" "<" NUMBER ">" "(" NUMBER ")" | TAG | AM

Appendix A: Design Page XXI

2.3 Micro-Code-Template Compiler
2.3.1 Overview

The Micro-Code-Template compiler will compile the emulator functionality (InstructionsUCode
class implementation when running a program based on the instruction set.

2.3.2 System-Template Compiler Grammar

u_code - "code" "{" command_list "}"
command_list > command_list command | command
command = "T" NUMBER "(" condition_listl *)" ":" u_op_list ";"
condition_list = "(** condition_list ")" | condition_list "&&" condition_list | condition_list "||" condition_list |
"I" condition_list:cl | condition:c
condition - 1D range | ID ".chn" | "opcode" "("* NUMBER ")"
u_op_list > u_op_list"," u_op:uo | u_op:uo
u_op - ID component_command | "if" "(* condition_list ")" "{" u_op_list "}" | alu_command | move:m |
asign_op_code | "end" | "hit"
component_command - ".cmp" | ".inc" | ".clr" | ".set"
move > ID "[* NUMBER "-" NUMBER "]" "<-" ID range | ID “[" NUMBER "]" "<-" ID range |
ID "<-"ID "[" NUMBER "-" NUMBER "]" | ID "<-" ID "[" NUMBER "]" | ID "<-" ID | ID "<-" alu_command
asign_op_code - "opcode" "=""#" ID range
alu_command - "<" ID ™:" ID alu_b_op ID ">" | "<" ID:alu ":" NUMBER ":" ID alu_o_op ">"
"<"ID"™:" NUMBER ":" alu_o_op ID ">"
"<"ID ™" NUMBER ":" ID alu_shift_side alu_shift_filler NUMBER ">"
alu b op = == I ST S T & T A T %
alu o op>"~"
alu_shift_side > ""<<" | "">>"
alu_shift_filler > "(0)™ | "(1)™
range = "[" NUMBER "-" NUMBER "]" | "[" NUMBER "]" | ¢

Appendix A: Design Page XXI1

2.4 Assembler

2.4.1 Overview

The assembler will go through the assembly code written by the programmer, assembling it into
machine code. The output is a binary (Hexadecimal) set of instructions that can be loaded into the
system's memory. The assembler uses the two-pass method to assemble a program. The first pass
will create a list of all tags used for variables and brunching as well as their addresses, and will
assemble the code, leaving placeholders whenever a tag is encountered. The second pass will
replace the placeholders with the memory addresses of the tags. The assembler grammar definition
is generated by the Format-Template compiler.

2.4.2 Assembler Grammar

program - command_list "END"

command_list > command_list command_line | command_line

command_line - tag_declaration operation "\n" | tag_declaration var_declaration "\n" | operation "\n" |
"ORG" NUMBER "\n"

tag_declaration > ID ","

var_declaration > "HEX" NUMBER | "DEC' NUMBER | "BIN" NUMBER

access_mode - ID | ¢

operation - 1D ID access_mode | ID

Appendix B: System Architecture Page |

Appendix B: System
Architecture

1. System Components

1.1 ALU (ALU)
1.1.1 Metadata
Type: ALU
ID: 0 (ALU_INO=1; ALU_ IN1=2; ALU OUT =3)
Size: ALU_INO = 16 bit; ALU_IN1 = 16 bit; ALU_OUT = 16 bit
1.1.2 Inputs
e Data Register (ALU_INO)
e Accumulator (ALU_IN1)
e Input Register (ALU_IN1)
1.1.3 Outputs

o E flag (Direct)
e Accumulator (ALU_OUT)

1.2 Memory (M)
1.2.1 Metadata
Type: Memory

ID: 4

Size: 4096 x 16 bit
1.2.2 Inputs

e Bus
e Address Register (Address Index)

1.2.3 Outputs

e Bus

Appendix B: System Architecture Page 11

1.3 Bus (BUS)
1.3.1 Metadata

Type: Bus
ID: 5
Size: 16 bhit

1.3.2 Inputs

Memory

Address Register
Program Counter
Data Register
Accumulator
Instruction Register
Temporary Register 0
Temporary Register 1

1.3.3 Outputs

Memory

Address Register
Program Counter
Data Register
Instruction Register
Temporary Register 0
Temporary Register 1
Output Register

1.4 Address Register (AR)
1.4.1 Metadata
Type: AddressRegister
ID: 6
Size: 12 bit
1.4.2 Inputs
e Bus

1.4.3 Outputs

e Bus

Appendix B: System Architecture Page 111

1.5 Program Counter (PC)
1.5.1 Metadata
Type: AddressRegister
ID: 7
Size: 12 bit
1.5.2 Inputs
e Bus

1.5.3 Outputs

e Bus

1.6 Data Register (DR)
1.6.1 Metadata
Type: DataRegister
ID: 8
Size: 16 bit
1.6.2 Inputs
e Bus

1.6.3 Outputs

° Bus
ALU_INO

1.7 Accumulator (AC)
1.7.1 Metadata
Type: DataRegister
ID: 9
Size: 16 bit
1.7.2 Inputs
e ALU OUT

1.7.3 Outputs

o Bus
e ALU_IN1

Appendix B: System Architecture

1.8 Instruction Register (IR)
1.8.1 Metadata
Type: DataRegister
ID: 10
Size: 16 bit
1.8.2 Inputs
e Bus

1.8.3 Outputs

e Bus

1.9 Temporary Register 0 (TRO0)
1.9.1 Metadata
Type: DataRegister
ID: 11 (TR = TRO)
Size: 16 bit
1.9.2 Inputs
e Bus

1.9.3 Outputs

e Bus

1.10 Temporary Register 1 (TR1)
1.10.1 Metadata
Type: DataRegister
ID: 12
Size: 16 bit
1.10.2 Inputs
L Bus

1.10.3 Outputs

e Bus

Page IV

Appendix B: System Architecture

1.11 Input Register (INPR)
1.11.1 Metadata
Type: IORegister
ID: 13
Size: 8 bit
1.11.2 Inputs
e Keyboard
1.11.3 Outputs

e ALU_IN1

1.12 Output Register (OUTR)
1.12.1 Metadata
Type: I0Register
ID: 14
Size: 8 bit
1.12.2 Inputs
e Bus

1.12.3 Outputs

e Screen

1.13 End Carry (E)
1.13.1 Metadata
Type: Flag

ID: 15
Size 1 bit

1.14 Interrupt Request (R)
1.14.1 Metadata
Type: Flag

ID: 16
Size 1 bit

1.15 CPU Start (S)
1.15.1 Metadata

Page V

Appendix B: System Architecture

Type: Flag
ID: 17
Size 1 bit

1.16 Indirect (1)
1.16.1 Metadata
Type: Flag

ID: 18
Size 1 bit

1.17 Interrupt Enable (IEN)

1.17.1 Metadata
Type: Flag

ID: 19
Size 1 bit

1.18 Input Flag (FGI)
1.18.1 Metadata
Type: Flag

ID: 20
Size 1 bit

1.19 Output Flag (FGO)
1.19.1 Metadata
Type: Flag

ID: 21
Size 1 bit

Page VI

Appendix B: System Architecture Page VII
2. Transfer Map
\ i > 7 = E ® ~ - z e
From E I; I; |8 < 8 % g % ()% g g 'E % %
S = 5
ALU AC
ALU_| NO ALU_OUT ALU_OUT
ALU_| N1 ALU_OUT ALU_OUT
ALU_OUT AC
M BUS | BUS | BUS BUS | BUS | BUS BUS
BUS M AR | PC | DR IR | TRO | TRL OUTR
AR BUS BUS | BUS BUS | BUS | BUS BUS
PC BUS BUS BUS BUS | BUS | BUS BUS
DR oo | Ao aumo | BUS BUS | BUS aumo | BUS | BUS | BUS BUS
AC ALU_INL ALU_INL ALU_INL BUS BUS BUS BUS BUS BUS BUS BUS
IR BUS BUS | BUS | BUS BUS | BUS BUS
TRO BUS BUS | BUS | BUS BUS BUS BUS
TR1 BUS BUS | BUS | BUS BUS | BUS BUS
INPR ALU_IN1 ALU_INL ALU_INL ALU_INL
OUTR

= Green: Target reached
» Red: Target is unreachable

3. ALU Commands

3.1 Unary Commands

Complement: ~Operand

3.2 Binary Commands

Sum: Operand + Operand

Subtract: Operand - Operand

Multiply: Operand * Operand

Divide: Operand / Operand

Modulo: Operand % Operand

Bitwise And: Operand & Operand

Bitwise Or: Operand | Operand

Bitwise Xor: Operand ~ Operand

Equal: Operand == Operand

Not Equal: Operand != Operand

Greater: Operand > Operand

Lower: Operand < Operand

Greater or Equal: Operand >= Operand
Lower or Equal: Operand <= Operand
Shift Left: Operand << <NUM_OF BITS>
Shift Right: Operand >> <NUM_OF BITS>

Appendix B: System Architecture Page VIII

4. CPU Architecture Diagram

- Register (S, —»
Memory Unit selection J 57

16 4096 x 16 16MeS |55 —
prd . 7
7 > | | 0000[—7*
| %
Write Read
» Address register (AR)12,
LD TNR CLK
—» Program counter (PC)1
LD TNR CLR
Data register (DR) A6
LD INR CLR
Programmer
interface

registersiflags

LD INR CLR

|:| Transparent
registers FGI
INPR 5[Keyboard

Instruction register (IR) A 16
LD

Accumulator (AC) A6 T

Temporary register (TR)A16
LD

INR CLR

OUTR AS|[C——>Screen
© |FGo

